

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA).

Astronuclear Abundances

Final Report of the Work Package 5 2021-2025

ABUNDANCES OF CHEMICAL ELEMENTS IN STARS: CURRENT TRENDS AND ADVANCES

Millions of stars studied with modern spectroscopic surveys

VLT UT2 (8m)

WEAVE

Fibers: 1004

Objects: ~850 per exposure

Range: 404–685 nm; Resolution: 18000-30000

WHT (4.2m)

GIRAFFE

Objects: ~120 per exposure (132 fibers with Medusa)

Range: 370–900 nm; ~20 nm per exp.

Resolution: 18000-30000

ABUNDANCES OF CHEMICAL ELEMENTS IN STARS: CURRENT TRENDS AND ADVANCES

Millions of stars studied with modern spectroscopic surveys

GALAH DR4

ABUNDANCES OF CHEMICAL ELEMENTS IN STARS: CURRENT TRENDS AND ADVANCES

- Millions of stars studied with modern spectroscopic surveys
- Impressive advances in automated state-of-the-art abundance analysis tools

Gent et al. 2022, A&A, 658, A147 NGC104 NGC1261 NGC362 < [Fe/H] > = -0.73 ± 0.04 < [Fe/H] > = -1.17 ± 0.06 < [Fe/H] > = -1.08 ± 0.03 t = 11 Gyrs, [Fe/H] = -0.70 dex t = 9 Gyrs, [Fe/H] = -1.20 dex t = 9 Gyrs, [Fe/H] = -1.00 dext = 12 Gyrs, [Fe/H] = -0.70 dex t = 10 Gyrs, [Fe/H] = -1.20 dex t = 10 Gyrs, [Fe/H] = -1.00 dexSAPP Log(g) [dex] t = 13 Gyrs, [Fe/H] = -0.70 dex t = 11 Gyrs, [Fe/H] = -1.20 dex t = 11 Gyrs, [Fe/H] = -1.00 dex 7000500000550050004500 70065060095090004500 , 1006506009509009500 SAPP Teff [K] SAPP T_{eff} [K] SAPP T_{eff} [K]

PLATO stellar parameter and abundance pipeline

Below: PLATO fields (in blue). **Left:** Surface gravities determined using the PLATO SAPP pipeline for several Galactic globular clusters (the SAPP was "calibrated" using the 1D MARC model atmospheres).

ABUNDANCES OF CHEMICAL FLEMENTS IN STARS: CURRENT TRENDS AND ADVANCES

- Millions of stars studied with modern spectroscopic surveys
- Impressive advances in automated state-of-the-art abundance analysis tools

HOWEVER

- "Classical" approaches still dominate automated abundance analysis:
 - 1D hydrostatic model atmospheres, local thermodynamic equilibrium (LTE) abundance analysis
 - 3D NLTE abundances analysis still rare, even in the contexts where this may make a difference
- Diverse landscape of abundance analysis tools:
 - Methods and tools differ, sizeable systematic differences in the results of different groups
 - Automated stellar abundance pipelines rarely open-source
 - Al forthcoming!

ABUNDANCES OF CHEMICAL ELEMENTS IN STARS: HOW TO IMPROVE?

- 3D hydrodynamical model atmospheres instead of "classical" 1D hydrostatic
- Non-local thermodynamic equilibrium (NLTE) abundance analysis instead of "classical" LTE

3D NLTE abundances instead of 1D LTE

ABUNDANCES OF CHEMICAL ELEMENTS IN STARS: HOW TO IMPROVE?

- 3D hydrodynamical model atmospheres instead of "classical" 1D hydrostatic
- Non-local thermodynamic equilibrium (NLTE) abundance analysis instead of "classical" LTE
- Automated open-source abundance pipelines

3D NLTE abundances instead of 1D LTE

Stellar parameters & 3D NLTE abundances for large numbers of stars

PLATO stellar parameter and abundance pipeline

Rauer et al. 2025, Exp. Astron., 59, i26

Left: PLATO fields (in blue). Far left: Surface gravities determined using the PLATO SAPP pipeline for several Galactic globular clusters (the SAPP was "calibrated" using the 1D MARC model atmospheres).

ChETEC-INFRA WP5: goals and deliverables

THE GOAL

Homogenize stellar abundance analyses by providing new abundance analysis methods and tools

THE DELIVERABLES

- Database of 3D NLTE Abundance Corrections
- Homogeneous Open-Source Stellar Pipeline

THE TEAM

27 participants from 19 institutions (13 countries)

Associated partners

ChETEC-INFRA WP5: why 3D NLTE?

(I) ADVANTAGES OF USING 3D HYDRODYNAMICAL MODEL ATMOSPHERES

- Allows to account for the influence of non-stationary phenomena in stellar atmospheres on:
 - Stellar atmospheric structure
 - · Spectral line formation properties and line strengths

Metal-poor subgiant BD+44493

ChETEC-INFRA WP5: why 3D NLTE?

(I) ADVANTAGES OF USING 3D HYDRODYNAMICAL MODEL ATMOSPHERES

- Allows to account for the influence of non-stationary phenomena in stellar atmospheres on:
 - Stellar atmospheric structure
 - · Spectral line formation properties and line strengths
 - Differences between the 3D and 1D abundances

Oxygen abundance from OH lines in the metal-poor giant HD+122563

ChETEC-INFRA WP5: why 3D NLTE?

(II) ADVANTAGES OF USING NLTE SPECTRAL LINE SYNTHESIS

- Differences in the departure coefficients for individual atomic level populations lead to:
 - significant differences between the NLTE and LTE line profiles
 - differences in NLTE and LTE abundances
- 3D plays a role, too!

Atomic levels

Ba II model atom

TASK 5.1: A GRID OF 3D HYDRODYNAMIC MODEL ATMOSPHERES

- New grid of 3D hydrodynamical model atmospheres
 - 75 low-res + 35 high-res 3D model atmospheres
 - 11 million CPU hours used

TASK 5.1: 3D NLTE ABUNDANCE CORRECTIONS DATABASE

- New tool for 1.5D NLTE abundance analysis:
 - NLTE15D code for the computation of 1.5D NLTE abundance corrections

3D NLTE abundance corrections for Ba II lines © Andrew J. Gallagher, AIP

Ba II 4554.033 Å line formation in the atmosphere of red giant star

TASK 5.1: 3D NLTE ABUNDANCE CORRECTIONS DATABASE

- New tool for 1.5D NLTE abundance analysis:
 - NLTE15D code for the computation of 1.5D NLTE abundance corrections
- Grid of 1.5D NLTE abundance corrections for I
 - 1.5D NLTE corrections for 92 3D models
- Grid of 1.5D NLTE abundance corrections for Sr
 - 1.5D NLTE corrections for 32 3D models
- Computations carried out on HPC clusters at Vilnius University (Lithuania), IAP (Germany), and Hull University (UK)
- Abundance correction database: https://www.chetec-infra.eu/3DNLTE/

3D NLTE abundance corrections for Ba II lines

© Andrew J. Gallagher, AIP

TASK 5.2: ABUNDANCE DETERMINATION PIPELINE

Automated open-source abundance pipeline: stellar parameters, 3D/1D LTE/NLTE abundances

TASK 5.2: ABUNDANCE DETERMINATION PIPELINE

- New automated open-source tool webSME:
 - automated stellar parameter and 3D/1D LTE/NLTE abundance determination pipeline, and its online interface
 - 1.5D NLTE abundance corrections for Ba II lines (Sr I and II forthcoming)
 - already used for Bachelor/Master projects at Uppsala; paper on webSME forthcoming

Fig. 3. Observed spectral range around the Mg I λ 5167-5183 magnesium triplet of β Gem (gray) and best-fit result from webSME (red).

A SUCCESS STORY: PROJECT MINCE

- "Measuring at Intermediate Metallicity Neutron Capture Elements" (MINCE; talk by Gabriele Cescutti!)
- Abundances in the Galactic halo stars at [Fe/H] = -1 ... -2.
- ChETEC-INFRA: small-to-medium size telescopes, high-res spectra
- A significant amount of data via ChETEC-INFRA TNA
- MINCE Papers I III published
- Public MINCE database: http://archives.ia2.inaf.it/mince/
- Future: final sample of 200-300 stars, WP5 abundance pipeline to obtain 1.5D NLTE abundances of s-process elements

Star	Teff	log g	[Fe/H]	Ba corr
Care	5770	4 4 4	0.00	
Sun	5770	4.44	0.00	-
HD 115575	4393	1.50	-1.99	0.2
BD +48 2167	4468	1.50	-2.29	0.2
BD +11 2896	4254	1.50	-1.41	0.067
BD-004538	4482	1.50	-1.90	0.216
BD +03 4904	4497	1.50	-2.58	0.177

MINCE II Francois et al. (2024)

DELIVERABLES

- Database of 3D NLTE Abundance Corrections:
 - **D5.1**, month 24 "Publish on the ChETEC-INFRA web page a first version of 3D NLTE abundance corrections grid for a limited number of chemical elements"
 - **D5.3**, month 42 "Scientific publication on a new grid of 3D hydrodynamical model atmospheres covering the range of stellar atmospheric parameters from dwarf to giant stars"
 - **D5.5**, month 48 "Publish on ChETEC-INFRA web page an open-access web-based database of 3D NLTE abundance corrections for a number of key s-process chemical elements computed using the new 3D hydro grid"
- Homogeneous Open-Source Stellar Pipeline:
 - D5.2, month 30 "Publish open-source pipeline on project web page"
 - **D5.4**, month 42 "Publish on project web page open-access web-based database of corrections of surface abundances for the effects of stellar evolution"

ALL DONE

SCHOOLS, OUTREACH

- First ChETEC-INFRA Observational School in Ondrejov, July 2023:
 - ~20 students
 - 3 nights of remote observations with NOT, lots of data obtained for the analysis
 - successful usage of webSME pipeline by students to analyze the data obtained
 - students (and lecturers!) excited!
- Second ChETEC-INFRA Observational School: Prague, July 2025:
 - ~20 students
 - 4 x 0.5 nights of remote observations with NOT, lots of data obtained for the analysis
 - successful usage of webSME pipeline by students to analyze the data obtained
 - students (and lecturers!) excited!
- Masterclass by Hannes Nitsche et al. on cosmological lithium problem, utilizes the webSME pipeline

HIRING OF PERSONNEL

- 2-year PDRA at the Astrophysical Institute Potsdam (Andrew J. Gallagher)
- 2-year PDRA (1-year funding from ChETEC-INFRA) at Uppsala Observatory (Johannes Puschnig)
- 2-year PDRA at the Trieste Astronomical Observatory (Chi Thanh Nguyen)
- 1-year PDRA at Vilnius University (Jonas Klevas / Edgaras Kolomiecas)

ChETEC-INFRA WP5: conclusions

SUMMARY AND CONCLUSIONS

- Goals of ChETEC-INFRA WP5 achieved, deliverables completed
- · New collaboration networks and teams have been built
- Obtained scientific results shared not only with the community, but with the broader society, too
- Two schools for young scientists organized, both highly ranked by the students

ChETEC-INFRA – A KEY VEHICLE FOR ACHIEVING ALL THIS

THANK YOU!

Associated partners

