Nuclear reactions for Standard Solar Models

Aldo Serenelli Institute of Space Sciences (ICE, CSIC)

Schools on Nuclear Astrophysics Questions 8/12/2021

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$

 $\gamma \le 26.7 \text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$

 $\gamma \le 26.7 \text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$

CN-cycle initially proposed in the 1930s

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$

 $\gamma \le 26.7 \text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$

CNO-(bi)cycle

Part of the larger CNO-cycle

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$

 $\gamma \le 26.7 \text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$

CNO-(bi)cycle

Part of the larger CNO-cycle

CN-cycle ~ 50 NO-cycle (Sun)

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$

$$\gamma \le 26.7 \text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$$

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$

 $\gamma \le 26.7 \text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$

proton-proton chains

two main branching points

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$

 $\gamma \le 26.7 \text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$

proton-proton chains

ppl:ppll:pplll (& ³He+p) 85:15:1e-4

Powering the Sun

$$4p \longrightarrow {}^{4}\text{He} + 2\nu_{e} + \gamma$$
$$\gamma \le 26.7\text{MeV} = c^{2}(4m_{p} - m_{{}^{4}\text{He}})$$

pp-chains

Powering the Sun

Eight fundamental neutrino sources can probe solar interior/physics

pp-chains

CNO-(bi)cycle

 $pp - pep - {^7Be} - {^8B} - hep$

 $^{13}N - ^{15}O - ^{17}F$

Powering the Sun

Eight fundamental neutrino sources can probe solar interior/physics

pp-chains

CNO-(bi)cycle

A framework (physical model) for quantitative predictions is needed (standard) solar models

stellar evolution -physical processes (equations)
constitutive physics (nuclear rates, EOS, opacity, etc.)
initial composition of the star

Reaction	Uncertainty	Ref.
$p + p \rightarrow d + \nu_e + e^+$	1%	A16
$^{3}\mathrm{He} + ^{3}\mathrm{He} \rightarrow 2\mathrm{p} + ^{4}\mathrm{He}$	5.2%	A11
$p + {}^{3}He \rightarrow {}^{4}He + \nu_{e} + e^{+}$	30%	A11
$^{3}\mathrm{He} + ^{4}\mathrm{He} \rightarrow ^{7}\mathrm{Be}$	5.2%	A11
$p + 7 Be \rightarrow^{8} B$	4.7%	Z15
$e^- + {}^7 Be \rightarrow {}^7 Li$	2%	A11
$^{\mathrm{p}}+^{14}\mathrm{N}\rightarrow^{15}\mathrm{O}$	7.5%	M11
$^{\mathrm{p}}+^{16}\mathrm{O}\rightarrow^{17}\mathrm{F}$	7.6%	A11

Adelberger et al. 2011, Marta et al. 2011, Zhang et al. 2015, Acharya et al. 2016 Other reactions have small influence on outcome of solar models stellar evolution - physical processes (equations) constitutive physics (nuclear rates, EOS, opacity, etc.) initial composition of the star

3 observational constraints imposed at present age $\tau_\odot\text{=}4.57$ Gyr

- * photospheric $(Z/X)_{\odot}$ + solar mixture (fractional abundance of all metals)
- * solar radius R_{\odot}
- * solar luminosity L_{\odot} = 3.8418 x 10³³ erg s⁻¹

stellar evolution - physical processes (equations) constitutive physics (nuclear rates, EOS, opacity, etc.) initial composition of the star

3 observational constraints imposed at present age $\tau_\odot\text{=}4.57$ Gyr

* photospheric $(Z/X)_{\odot}$ + solar mixture (fractional abundance of all metals)

- * solar radius R_{\odot}
- * solar luminosity L_{\odot} = 3.8418 x 10³³ erg s⁻¹

3 free parameters for the initial (pre-main sequence) model

- * Initial helium Y_{ini} (L_{\odot})
- * Initial metallicity Z_{ini} (X+Y+Z=1), so all composition determined (Z/X)_☉
- * Efficiency of convection in mixing length $lpha_{\text{MLT}}$ (R $_{\odot}$)

Evolve until solar age τ_{\odot} and adjust free parameters until observational constraints are satisfied (iterative process)

A standard solar model imposes a strong constraint on solar energetics

$$L_{\odot} = \int_{0}^{M} \left(\varepsilon_{\text{nuc}} - \varepsilon_{\nu} + \varepsilon_{\text{eg}} \right) dm$$
gravothermal energy
(contraction/expansion/internal)

energy) Negligible in main sequence star

A standard solar model imposes a strong constraint on solar energetics

$$L_{\odot} = \int_{0}^{M} \left(\varepsilon_{\text{nuc}} - \varepsilon_{\nu} + \varepsilon_{\text{eg}}\right) dm$$
nuclear energy production

nuclear energy production and associated neutrino losses

$$\varepsilon_{\rm nuc} = \sum_{\rm H-burn} \varepsilon_i(T, \rho, \vec{X})$$

$$\varepsilon_{\nu} = \sum_{i=1,8} \langle \varepsilon_{\nu} \rangle_i$$

A standard solar model imposes a strong constraint on solar energetics

$$L_{\odot} = \int_{0}^{M} (\varepsilon_{\text{nuc}} - \varepsilon_{\nu} + \varepsilon_{\text{eg}}) \, dm$$

nuclear energy production
and associated neutrino losses
$$\varepsilon_{\text{nuc}} = \sum_{\text{H-burn}} \varepsilon_{i}(T, \rho, \vec{X}) \qquad \qquad \varepsilon_{\nu} = \sum_{i=1,8} \langle \varepsilon_{\nu} \rangle_{\pi}$$

A linear relation between neutrino fluxes and solar luminosity can be obtained known as "Luminosity constraint" (Bahcall 2002, Vescovi et al. 2021)

$$L_{\odot} = \sum_{i=1,8} \alpha_i \Phi_i$$

where α_i are given by **nuclear physics** and fluxes by the structure of the Sun (or model)

Spectral shape of neutrino fluxes well known (weak interactions) Absolute fluxes depend on model

Solar neutrino problem

For ~30 years – ν_e only experiments showed a solar ν deficit

Two classes of astrophysical solution

Accurate and precise ³He+⁴He, ³He+³He, p+⁷Be rates became crucial lengthy coverage of literature – Adelberger et al. 2011

Neutrino oscillations

SNO (and SuperK) discovery of neutrino oscillations

Neutrino oscillations

SNO (and SuperK) discovery of neutrino oscillations

Towards spectroscopy of solar neutrinos - Borexino

 ν fluxes: Solar models vs. Borexino

Once v-oscillations are accounted for \rightarrow good agreement with SSM (Borexino coll. 2018)

$$L = 3.89^{+0.35}_{-0.42} \times 10^{33} \,\mathrm{erg/s} \qquad \qquad L_{\odot} = 3.842 \times 10^{33} \,\mathrm{erg/s}$$

v-physics and solar models remain associated survival probability computed using SSMs as reference fluxes

Detailed tests of solar physics

$$L = 3.89^{+0.35}_{-0.42} \times 10^{33} \text{ erg/s}$$
$$L_{\odot} = 3.842 \times 10^{33} \text{ erg/s}$$

In agreement, but 10% uncertainty

$$L_{\odot} = \int_{0}^{M} \left(\varepsilon_{\rm nuc} - \varepsilon_{\nu} + \varepsilon_{\rm eg} \right) dm$$

still room for non-standard energy sources

Institute of

Space Sciences

Flux	Solar (Global)		SSM - B16
	(no LC)		high-Z
$\Phi(pp)$	$6.21{\pm}0.50$	_	5.98(0.6%)
$\Phi(\text{pep})$	$1.51{\pm}0.12$		1.44(1%)
$\Phi(hep)$	19^{+12}		7.98(30%)
$\Phi(^7\text{Be})$	$4.85 {\pm} 0.19$	3%	4.93(6%)
$\Phi(^{8}B)$	$5.16^{+0.13}_{-0.09}$	2%	5.46(12%)
	0.00		
E:	xperiments		Solar model

Institute of

Space Sciences

Flux _	Solar (Global)		SSM - B16
	(no LC)		high-Z
$\Phi(pp)$	$6.21 {\pm} 0.50$	_	5.98(0.6%)
$\Phi(\text{pep})$	$1.51 {\pm} 0.12$		1.44(1%)
$\Phi(hep)$	19^{+12}		7.98(30%)
$\Phi(^7\text{Be})$	$4.85 {\pm} 0.19$	3%	4.93(6%)
$\Phi(^{8}B)$	$5.16^{+0.13}_{-0.09}$	2%	5.46(12%)

Experiment better than models

Nuclear reactions a limiting factor $S_{34} - 5\%$ $S_{17} - 5\%$

Institute of

Space Sciences

Institute of

Space Sciences

Flux	Solar	(Global)	SSM	- B16
	(no LC)		high-Z	low-Z
$\Phi(pp)$	$6.21{\pm}0.50$	_	5.98(0.6%)	6.03(0.5%)
$\Phi(ext{pep})$	$1.51{\pm}0.12$		1.44(1%)	1.46(1%)
$\Phi(hep)$	19^{+12}_{-9}		7.98(30%)	8.25(30%)
$\Phi(^7\text{Be})$	$4.85 {\pm} 0.19$	3%	4.93(6%)	4.50(6%)
$\Phi(^8B)$	$5.16\substack{+0.13 \\ -0.09}$	2%	5.46(12%)	4.50(12%)
			1	

Also solar studies

Two solar models – different solar composition 7 Ro and 8 R different by 10% and 20%

⁷Be and ⁸B different by 10% and 20%

Discrimination between them depends crucially on reducing model uncertainties

Solar abundance problem

3 observational constraints imposed at present age τ_\odot =4.57 Gyr

* photospheric $(Z/X)_{\odot}$ + solar mixture (fractional abundance of all metals)

- * solar radius R_{\odot}
- * solar luminosity L_{\odot} = 3.8418 x 10³³ erg s⁻¹

Spectroscopic analysis

new (AGSS09) vs old (GS98)

3D vs 1D model atmospheres NLTE vs LTE line formation identification of line blends

CNO(Ne) < 30-40%

"Modern" solar composition: low in metals

- \rightarrow smaller radiative opacity in solar interior
- \rightarrow impact on radiative energy transport (degeneracy with uncertain opacities)
- ightarrow changes internal solar structure

Most clear evidence - solar sound speed profile

(measurable by studying solar oscillations – global sound waves – helioseismology)

Solar abundance problem – no solution so far: limit in modeling Sun/stars?

Fluxes on Earth cm⁻²s⁻¹

Flux	B16-GS98	B16-AGSS09met
$\Phi(pp)$	$5.98(1\pm 0.006)$	$6.03(1\pm0.005)\text{x10}^{\text{10}}$
$\Phi(\text{pep})$	$1.44(1 \pm 0.01)$	$1.46(1\pm0.009) \text{ x10}^8$
$\Phi(hep)$	$7.98(1 \pm 0.30)$	$8.25(1 \pm 0.30)$ x10 ³
$\Phi(^7\text{Be})$	$4.93(1 \pm 0.06)$	$4.50(1\pm 0.06)$ x10 ⁹
$\Phi(^{8}B)$	$5.46(1 \pm 0.12)$	$4.50(1\pm0.12)$ x10 ⁶
$\Phi(^{13}N)$	$2.78(1 \pm 0.15)$	$2.04(1 \pm 0.14) \text{ x10}^8$
$\Phi(^{15}\text{O})$	$2.05(1 \pm 0.17)$	$1.44(1 \pm 0.16)$ x10 ⁸
$\Phi(^{17}\text{F})$	$5.29(1 \pm 0.20)$	$3.26(1\pm0.18)$ x10 ⁶

CNO fluxes reflect linearly the CNO abundances 30-40% differences 15-20% uncertainties

Can we exploit v-fluxes to learn about solar core composition and point towards a solution of solar abundance problem?

Uncertainties in model v-fluxes separated qualitatively in:

- environmental (thermal): factors contributing to temperature in solar core (T_c)
 radiative opacities, solar luminosity, abundance of metals (but CNO)
- nuclear rates: affect individual or a few fluxes (e.g. ³He+⁴He)
- CN(O) abundances: affect directly CN(O) fluxes

Uncertainties in model v-fluxes separated qualitatively in:

- environmental (thermal): factors contributing to temperature in solar core (T_c) radiative opacities, solar luminosity, abundance of metals (but CNO)
- nuclear rates: affect individual or a few fluxes (e.g. ³He+⁴He)
- CN(O) abundances: affect directly CN(O) fluxes

Flux dependences

$$\frac{\Phi_i}{\Phi_{i,0}} = \prod_{j=\text{env}} \left(\frac{p_j}{p_{j,0}}\right)^{\beta_{ij}} \prod_{j=\text{nuc}} \left(\frac{p_j}{p_{j,0}}\right)^{\beta_{ij}} \prod_{j=\text{CNO}} \left(\frac{p_j}{p_{j,0}}\right)^{\beta_{ij}}$$

Uncertainties in model v-fluxes separated qualitatively in:

- environmental (thermal): factors contributing to temperature in solar core (T_c) radiative opacities, solar luminosity, abundance of metals (but CNO)
- nuclear rates: affect individual or a few fluxes (e.g. ³He+⁴He)
- CN(O) abundances: affect directly CN(O) fluxes

Flux dependences

$$\frac{\Phi_{i}}{\Phi_{i,0}} = \prod_{j=\text{env}} \left(\frac{p_{j}}{p_{j,0}}\right)^{\beta_{ij}} \prod_{j=\text{nuc}} \left(\frac{p_{j}}{p_{j,0}}\right)^{\beta_{ij}} \prod_{j=\text{CNO}} \left(\frac{p_{j}}{p_{j,0}}\right)^{\beta_{ij}}$$
$$\delta \Phi_{i} = \sum_{j=\text{env}} \beta_{ij} \delta p_{j} + \sum_{j=\text{nuc}} \beta_{ij} \delta p_{j} + \sum_{j=\text{CNO}} \beta_{ij} \delta p_{j}$$
1st order approximation

 β_{ij} obtained from solar models (Serenelli et al. 2013) or linear perturbation (Villante & AS 2021)

Institute of Space Sciences Solar composition from solar neutrinos

Environmetal uncertainties are fully correlated among fluxes In linear regime, it is reasonable that for any two fluxes (i,k), a coefficient c_{ik}

$$\delta\Phi_i - c_{ik}\delta\Phi_k = \sum_{j=\text{env}} (\beta_{ij} - c_{ik}\beta_{kj})\delta p_j + \sum_{j=\text{nuc}} (\beta_{ij} - c_{ik}\beta_{kj})\delta p_j + \sum_{j=\text{CNO}} (\beta_{ij} - c_{ik}\beta_{kj})\delta p_j$$

That will give
$$\sum_{j=env} (\beta_{ij} - c_{ik}\beta_{kj})\delta p_j \approx 0$$

i.e. build a combination of v-fluxes that minimizes environmental uncertainties

Institute of

Space Sciences

Environmetal uncertainties are fully correlated among fluxes

Serenelli et al. 2013

$$\frac{\phi(^{13}\text{N})}{\phi(^{13}\text{N})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.576}$$

$$= x_{C}^{0.840} x_{N}^{0.161} D^{0.183} [L_{\odot}^{0.553} O^{-0.017} A^{0.157}]$$

$$\times [S_{11}^{-0.639} S_{33}^{0.264} S_{34}^{-0.526} S_{17}^{-0.576} S_{e7}^{0.576} S_{114}^{0.743}]$$

$$\times [x_{O}^{0.002} x_{Ne}^{-0.005} x_{Mg}^{-0.004} x_{Si}^{0.0} x_{Sr}^{0.001} x_{Ar}^{0.005}]$$

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.785}$$

$$= x_{C}^{0.794} x_{N}^{0.212} D^{0.172} [L_{\odot}^{0.515} O^{-0.016} A^{0.308}]$$

$$\times [S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{114}^{0.995}]$$

$$\times [x_{O}^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.003} x_{Si}^{-0.001} x_{S}^{-0.001} x_{Ar}^{0.003} x_{Fe}^{-0.003}]$$

$$\frac{\phi(^{13}\text{N})}{\phi(^{13}\text{N})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.576}$$

$$= x_{C}^{0.840} x_{N}^{0.161} D^{0.183} [L_{\odot}^{0.553} \mathcal{O}^{-0.017} A^{0.157}]$$

$$\times [S_{11}^{-0.639} S_{33}^{0.264} S_{34}^{-0.526} S_{17}^{-0.576} S_{e7}^{0.576} S_{114}^{0.743}]$$

$$\times [x_{O}^{0.002} x_{Ne}^{-0.005} x_{Mg}^{-0.004} x_{Si}^{0.0} x_{S}^{0.001} x_{Ar}^{0.005}]$$

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.785}$$

$$= x_{C}^{0.794} x_{N}^{0.212} D^{0.172} \begin{bmatrix} 10.515 \\ L_{\odot} \end{bmatrix}^{0.001} A^{0.008} \end{bmatrix}^{0.785} \times \left[S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{114}^{0.995}\right]$$

$$\times \left[x_{O}^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.001} x_{S1}^{-0.001} x_{Ar}^{0.001} x_{Ar}^{0.003}\right]^{0.003}$$

$$\frac{\phi(^{13}\text{N})}{\phi(^{13}\text{N})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.576}$$

$$= x_{C}^{0.840} x_{N}^{0.161} D^{0.183} [L_{\odot}^{0.553} Q^{-0.017} A^{0.157}]$$

$$\times \left[S_{11}^{-0.639} S_{33}^{0.264} S_{34}^{-0.526} S_{17}^{-0.576} S_{e7}^{0.576} S_{114}^{0.743}\right]$$

$$\times \left[x_{O}^{0.002} x_{Ne}^{-0.005} x_{Mg}^{-0.004} x_{Si}^{0.0} x_{S}^{0.001} x_{O}^{0.005}\right]$$

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.785}$$

$$= x_{C}^{0.794} x_{N}^{0.212} D^{0.172} \left[\frac{L^{0.515}}{L^{\odot}} \partial^{-0.016} A^{0.308}\right]$$

$$\times \left[S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{114}^{0.995}\right]$$

$$\times \left[x_{O}^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.003} x_{Si}^{-0.001} x_{S}^{-0.001} x_{Ar}^{0.001} x_{Fe}^{0.003}\right]$$

$$\frac{\Phi(^{13}N)}{\Phi(^{13}N)^{SSM}} = \left(\frac{\Phi(^{8}B)}{\Phi(^{8}B)^{SSM}}\right)^{0.576} \approx X_{C+N} \left[0.5\%(env) + 9\%(nuc) + 2\%(diff)\right]$$

$$\frac{\phi(^{13}\text{N})}{\phi(^{13}\text{N})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.576}$$

$$= x_{C}^{0.840} x_{N}^{0.161} D^{0.183} [\underline{L}_{\odot}^{0.553} O^{-0.017} A^{0.157}]$$

$$\times [S_{11}^{-0.639} S_{33}^{0.264} S_{34}^{-0.526} S_{17}^{-0.576} S_{e7}^{0.576} S_{114}^{0.743}]$$

$$\times [x_{O}^{0.002} x_{\text{Ne}}^{-0.005} x_{\text{Mg}}^{-0.004} x_{\text{Si}}^{0.0} x_{\text{Ar}}^{0.001} x_{\text{Fe}}^{0.005}]$$

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.785}$$

$$= x_{C}^{0.794} x_{N}^{0.212} D^{0.172} \left[L_{\odot}^{0.515} O^{-0.016} A^{0.308}\right]$$

$$\times \left[S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{114}^{0.995}\right]$$

$$\times \left[x_{O}^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.003} x_{Si}^{-0.001} x_{S}^{-0.001} x_{Ar}^{0.001} x_{Fe}^{0.003}\right]$$

$$\frac{\Phi(^{13}\text{N})}{\Phi(^{13}\text{N})^{\text{SSM}}} = \left(\frac{\Phi(^{8}\text{B})}{\Phi(^{8}\text{B})^{\text{SSM}}}\right)^{0.576} \approx X_{\text{C+N}} \left[0.5\%(\text{env}) + 9\%(\text{nuc}) + 2\%(\text{diff})\right]$$

$$\Phi(^{8}\text{B}) \longrightarrow \text{Fixed by experiments (SNO, SuperK) to 2\%}$$

$$\frac{\phi(^{13}\text{N})}{\phi(^{13}\text{N})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.576}$$

$$= x_{C}^{0.840} x_{N}^{0.161} D^{0.183} [L_{\odot}^{0.553} \mathcal{O}^{-0.017} A^{0.157}]$$

$$\times \left[S_{11}^{-0.639} S_{33}^{0.264} S_{34}^{-0.526} S_{17}^{-0.576} S_{e7}^{0.576} S_{114}^{0.743}\right]$$

$$\times \left[x_{O}^{0.002} x_{Ne}^{-0.005} x_{Mg}^{-0.004} x_{Si}^{0.0} x_{S}^{0.001} x_{O}^{0.005}\right]$$

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.785}$$

$$= x_{C}^{0.794} x_{N}^{0.212} D^{0.172} \left[L_{\odot}^{0.515} O^{-0.016} A^{0.308} \right]$$

$$\times \left[S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{114}^{0.995} \right]$$

$$\times \left[x_{O}^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.003} x_{Si}^{-0.001} x_{S}^{-0.001} x_{Ar}^{0.001} x_{Fe}^{0.003} \right]$$

$$\frac{\Phi(^{13}N)}{\Phi(^{13}N)^{SSM}} = \left(\frac{\Phi(^{8}B)}{\Phi(^{8}B)^{SSM}}\right)^{0.576} \approx X_{C+N} \left[0.5\%(env) + 9\%(nuc) + 2\%(diff)\right]$$

Dominant uncertainty – nuclear cross sections from several reactions (S₁₁₄, S₃₄, S₁₇)

$$\frac{\phi({}^{13}\text{N})}{\phi({}^{13}\text{N})^{\text{SSM}}} / \left[\frac{\phi({}^{8}\text{B})}{\phi^{\text{SSM}}({}^{8}\text{B})}\right]^{0.576}$$

$$= x_{C}^{0.840} x_{N}^{0.161} D^{0.183} \frac{[L_{\odot}^{0.553} \mathcal{O}^{-0.017} A^{0.157}]}{[L_{\odot}^{0.0576} S_{17}^{-0.576} S_{e7}^{0.576} S_{114}^{0.743}]} \times \left[S_{11}^{-0.639} S_{33}^{0.264} S_{34}^{-0.526} S_{17}^{-0.576} S_{e7}^{0.576} S_{114}^{0.743}\right] \times \left[x_{O}^{0.002} x_{Ne}^{-0.005} x_{Mg}^{-0.004} x_{Si}^{0.0} x_{S}^{0.001} x_{Ar}^{0.005}\right]$$

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}(^{8}\text{B})}}\right]^{0.785}$$

$$= x_{C}^{0.794} x_{N}^{0.212} D^{0.172} \left[\frac{L^{0.515}}{L^{\odot}} \partial^{-0.016} A^{0.308}\right]$$

$$\times \left[S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{114}^{0.995}\right]$$

$$\times \left[x_{O}^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.003} x_{Si}^{-0.001} x_{S}^{-0.001} x_{Ar}^{0.001} x_{Fe}^{0.003}\right]$$

$$\frac{\Phi(^{13}N)}{\Phi(^{13}N)^{SSM}} = \left(\frac{\Phi(^{8}B)}{\Phi(^{8}B)^{SSM}}\right)^{0.576} \approx X_{C+N} \left[0.5\%(env) + 9\%(nuc) + 2\%(diff)\right]$$

Provided a ¹³N (or ¹⁵O, or a combination of them) is available we obtain X_{C+N} in the solar core!

Borexino coll. 2020

CN measurement at Borexino

Still large experimental uncertainty – further improvements in data analysis Pioneering study for future experiments In solar models, reducing nuclear uncertainties is required Solar models:

reference neutrino fluxes for neutrino physics – survival probability vacuum limit potentially in transition region (CNO fluxes)

neutrino inferred luminosity tests solar energy source and non-standard mechanisms

learning about solar properties

Summary

CN composition in the core – solar abundance problem

breaking degeneracy with radiative opacities

surface vs core composition \rightarrow tests of chemical mixing in stars non-standard events (e.g. accretion in early

solar system)

Underlying these topics is the requirement of accurate and precise nuclear reaction rates Fundamental physics (and astrophysics) requires excellent nuclear physics

Blank page