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Part of the larger CNO-cycle

CN-cycle ~ 50 NO-cycle (Sun)
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proton-proton chains

two main branching points

pp-chains
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proton-proton chains

ppI:ppII:ppIII (& 3He+p)
85:15:1e-4

pp-chains
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pp-chains CNO-(bi)cycle

Villante & AS 2021
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Eight fundamental neutrino sources can probe solar interior/physics

pp – pep – 7Be – 8B - hep 13N – 15O – 17F
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pp-chains CNO-(bi)cycle

Eight fundamental neutrino sources can probe solar interior/physics

A framework (physical model) for quantitative predictions is needed
(standard) solar models
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stellar evolution - physical processes (equations)
constitutive physics (nuclear rates, EOS, opacity, etc.)
initial composition of the star

Reaction Uncertainty Ref.
p + p ! d + ⌫e + e+ 1% A16

3He +3 He ! 2p +4 He 5.2% A11
p +3 He !4 He + ⌫e + e+ 30% A11

3He +4 He !7 Be 5.2% A11
p +7 Be !8 B 4.7% Z15
e� +7 Be !7 Li 2% A11
p +14 N !15 O 7.5% M11
p +16 O !17 F 7.6% A11

Adelberger et al. 2011, Marta et al. 2011, Zhang et al. 2015, Acharya et al. 2016
Other reactions have small influence on outcome of solar models
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stellar evolution - physical processes (equations)
constitutive physics (nuclear rates, EOS, opacity, etc.)
initial composition of the star

3 observational constraints imposed at present age t8=4.57 Gyr

* photospheric (Z/X)8 + solar mixture (fractional abundance of all metals)
* solar radius R8

* solar luminosity L8= 3.8418 x 1033 erg s-1
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3 free parameters for the initial (pre-main sequence) model

* Initial helium Yini (L8) 
* Initial metallicity Zini (X+Y+Z=1), so all composition determined     (Z/X)8
* Efficiency of convection in mixing length aMLT (R8)

Evolve until solar age t8 and adjust free parameters until observational 
constraints are satisfied (iterative process)

stellar evolution - physical processes (equations)
constitutive physics (nuclear rates, EOS, opacity, etc.)
initial composition of the star

3 observational constraints imposed at present age t8=4.57 Gyr

* photospheric (Z/X)8 + solar mixture (fractional abundance of all metals)
* solar radius R8

* solar luminosity L8= 3.8418 x 1033 erg s-1
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A standard solar model imposes a strong constraint on solar energetics

L� =

Z M

0
("nuc � "⌫ + "eg) dm

gravothermal energy
(contraction/expansion/internal energy)

Negligible in main sequence star
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A standard solar model imposes a strong constraint on solar energetics

L� =

Z M

0
("nuc � "⌫ + "eg) dm

nuclear energy production
and associated neutrino losses

"nuc =
X

H�burn

"i(T, ⇢, ~X) "⌫ =
X

i=1,8

h"⌫ii

A linear relation between neutrino fluxes and solar luminosity can be obtained
known as "Luminosity constraint” (Bahcall 2002, Vescovi et al. 2021)

L� =
X

i=1,8

↵i�i

where ai are given by nuclear physics and fluxes by the structure of the Sun (or model)



Solar neutrino spectrumIns�tute of
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Spectral shape of neutrino fluxes well known (weak interactions)
Absolute fluxes depend on model

Villante & AS 2021
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For ~30 years – ne only experiments showed a solar n deficit 

Haxton et al. 2013
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L� =
X

i=1,8

↵i�i

Two classes of astrophysical solution

L� =

Z M

0
("nuc � "⌫ + "X) dm

Modification of SSM: 
solar dynamics, dark matter, etc, etc
(to lower 8B and 7Be)

Different n-fluxes
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Accurate and precise 3He+4He, 3He+3He, p+7Be rates became crucial
lengthy coverage of literature – Adelberger et al. 2011
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SNO (and SuperK) discovery of neutrino oscillations

SNO coll.
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SNO (and SuperK) discovery of neutrino oscillations



Towards spectroscopy of solar neutrinos - BorexinoIns�tute of
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SuperK, SNO

Borexino
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∫ fluxes: Solar models vs. Borexino

1.00±0.006

0.69±0.06

1.00±0.01

0.54±0.09

1.00±0.06

0.66±0.02

1.00±0.12

0.47±0.03

Theory
pp

pep
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Once n-oscillations are accounted for à good agreement with SSM (Borexino coll. 2018) 

L = 3.89+0.35
�0.42 ⇥ 1033 erg/s L� = 3.842⇥ 1033 erg/s



Neutrino oscillations – survival probabilityIns�tute of
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n-physics and solar models remain associated
survival probability computed using SSMs as reference fluxes

Borexino coll. 2018



Testing source of solar energyIns�tute of
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Detailed tests of solar physics

L = 3.89+0.35
�0.42 ⇥ 1033 erg/s

L� = 3.842⇥ 1033 erg/s

In agreement, but 10% uncertainty

L� =

Z M

0
("nuc � "⌫ + "eg) dm

still room for non-standard energy sources
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2%
3%

Experiments Solar model
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Experiment better than models

Nuclear reactions a limiting factor
S34 – 5%
S17 – 5% 

Experiments Solar model

The need for model precision fluxes



Ins�tute of
Space Sciences

Individual fluxes

2%
3%

Experiment better than models

Nuclear reactions a limiting factor
S34 – 5%
S17 – 5% 
This affects, e.g. P(ee), model dominated errorsExperiments Solar model

The need for model precision fluxes



Ins�tute of
Space Sciences

Individual fluxes

2%
3%

Also solar studies
Two solar models – different solar composition

7Be and 8B different by 10% and 20%

Discrimination between them depends crucially 
on reducing model uncertainties

The need for model precision fluxes
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3 observational constraints imposed at present age t8=4.57 Gyr

* photospheric (Z/X)8 + solar mixture (fractional abundance of all metals)
* solar radius R8

* solar luminosity L8= 3.8418 x 1033 erg s-1
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Spectroscopic analysis

new (AGSS09) vs old (GS98)

3D vs 1D model atmospheres
NLTE vs LTE line formation
identification of line blends

CNO(Ne) < 30-40%



Solar abudance problemIns�tute of
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“Modern” solar composition: low in metals 
à smaller radiative opacity in solar interior
à impact on radiative energy transport (degeneracy with uncertain opacities)
à changes internal solar structure

Most clear evidence – solar sound speed profile 
(measurable by studying solar oscillations – global sound waves – helioseismology)  
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Solar abundance problem – no solution so far: limit in modeling Sun/stars?
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GLOBAL
Model uncertainties
(nuclear) should be reduced



Solar abundance problemIns�tute of
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CNO fluxes reflect linearly the CNO abundances
30-40% differences
15-20% uncertainties

x1010

x108

x103
x109

x106

x108
x108
x106

Fluxes on Earth cm-2s-1

Can we exploit n-fluxes to learn about solar core composition and point towards a 
solution of solar abundance problem? 



Solar composition from solar neutrinosIns�tute of
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Uncertainties in model n-fluxes separated qualitatively in:

Ø environmental (thermal): factors contributing to temperature in solar core (Tc)
radiative opacities, solar luminosity, abundance of metals (but CNO)

Ø nuclear rates: affect individual or a few fluxes (e.g. 3He+4He)

Ø CN(O) abundances: affect directly CN(O) fluxes
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Flux dependences
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Uncertainties in model n-fluxes separated qualitatively in:

Ø environmental (thermal): factors contributing to temperature in solar core (Tc)
radiative opacities, solar luminosity, abundance of metals (but CNO)

Ø nuclear rates: affect individual or a few fluxes (e.g. 3He+4He)

Ø CN(O) abundances: affect directly CN(O) fluxes



Solar composition from solar neutrinosIns�tute of
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Flux dependences

obtained from solar models (Serenelli et al. 2013) or linear perturbation (Villante & AS 2021)

1st order approximation
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Uncertainties in model n-fluxes separated qualitatively in:

Ø environmental (thermal): factors contributing to temperature in solar core (Tc)
radiative opacities, solar luminosity, abundance of metals (but CNO)

Ø nuclear rates: affect individual or a few fluxes (e.g. 3He+4He)

Ø CN(O) abundances: affect directly CN(O) fluxes



Solar composition from solar neutrinosIns�tute of
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Environmetal uncertainties are fully correlated among fluxes
In linear regime, it is reasonable that for any two fluxes (i,k), a coefficient  cik

That will give 

i.e. build a combination of n-fluxes that minimizes environmental uncertainties

��i � cik��k =
X

j=env

(�ij � cik�kj)�pj +
X
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X
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Environmetal uncertainties are fully correlated among fluxes

Serenelli et al. 2013
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Environmetal uncertainties are fully correlated among fluxes

�(13N)
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=
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�(8B)SSM

◆0.576

⇡ XC+N [0.5%(env) + 9%(nuc) + 2%(di↵)]



Solar composition from solar neutrinosIns�tute of
Space Sciences

Environmetal uncertainties are fully correlated among fluxes

�(13N)

�(13N)SSM
=

✓
�(8B)

�(8B)SSM

◆0.576

⇡ XC+N [0.5%(env) + 9%(nuc) + 2%(di↵)]

�(8B) Fixed by experiments (SNO, SuperK) to 2%
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Environmetal uncertainties are fully correlated among fluxes

�(13N)

�(13N)SSM
=

✓
�(8B)

�(8B)SSM

◆0.576

⇡ XC+N [0.5%(env) + 9%(nuc) + 2%(di↵)]

Dominant uncertainty – nuclear cross sections from several reactions (S114, S34, S17)
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Environmetal uncertainties are fully correlated among fluxes

�(13N)

�(13N)SSM
=

✓
�(8B)

�(8B)SSM

◆0.576

⇡ XC+N [0.5%(env) + 9%(nuc) + 2%(di↵)]

Provided a 13N (or 15O, or a combination of them) is available we obtain
XC+N in the solar core!
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Borexino coll. 2020
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Space Sciences CN measurement at Borexino

Borexino coll. 2020

Still large experimental uncertainty – further improvements in data analysis
Pioneering study for future experiments
In solar models, reducing nuclear uncertainties is required
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Solar models:

reference neutrino fluxes for neutrino physics – survival probability 
vacuum limit
potentially in transition region (CNO fluxes)

neutrino inferred luminosity tests solar energy source and non-standard mechanisms

learning about solar properties
CN composition in the core – solar abundance problem
breaking degeneracy with radiative opacities
surface vs core composition à tests of chemical mixing in stars

non-standard events (e.g. accretion in early 
solar system)

Underlying these topics is the requirement of accurate and precise nuclear reaction rates
Fundamental physics (and astrophysics) requires  excellent nuclear physics
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