

Tracing α-Element Enrichment in the Globular Clusters of the Starburst Dwarf Galaxy IC 10

Mahtab Gholami, Benjamin Wehmeyer, Guru prasad, Ewa Niemczurat, and Tobias Bert Fischer

Osservatorio Astronomico di Capodimonte, INAF-OACN, Napoli, Italy. University of Wroclaw, Wroclaw, Poland.

Polytechnic University of science and technology, Wroclaw, Poland.

21–25 July 2025 Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Local Galactic Group

 $ext{SFE} = rac{ ext{Star Formation Rate (SFR)}}{ ext{Gas Mass }(M_{ ext{gas}})}$

- IC 10 is a starburst dwarf irregular galaxy in the Local Group.
 It has complex enrichment and star formation
- history.
 We investigate its chemical evolution using new spectroscopic data and GCE models.

$$\xi(m) \propto egin{cases} m^{-0.3} & {
m for} \; 0.01 \leq m/M_{\odot} < 0.08 \;\;\; {
m (brown \, dwarfs)} \\ m^{-1.3} & {
m for} \; 0.08 \leq m/M_{\odot} < 0.5 \;\;\; {
m (low-mass \, stars)} \\ m^{-2.3} & {
m for} \; 0.5 \leq m/M_{\odot} < 100 \;\;\; {
m (high-mass \, stars)} \end{cases}$$

This form matches observational data better than a single power law like the classic **Salpeter IMF** ($\alpha=2.35$ for all masses).

The **Kroupa IMF** is a **broken power-law** model, meaning the slope changes for different mass ranges:

Research Objectives

- Derive updated elemental abundances for IC 10's globular clusters (GCs).
- Model the chemical evolution using OMEGA (Côté et al. 2019).
- Compare with existing literature and optimize the GCE parameters.

Observational Data

Sharina et al. (2010):

- Low-resolution optical spectra of 4 GCs.
- Metallicity [Z/H] < −0.8, with spread in ages</p>

IC 10 GC Spectral Analysis

- GC22 and GC37 analyzed using ATLAS9 + SYNTHE.
- Parameters derived via χ² minimization:
 - GC22: Teff=5700K, logg=2.0, [Fe/H]=-0.8
 - GC37: Teff=5900K, logg=2.5,
 [Fe/H]=-0.6
- Elemental abundances: Mg, Y, Ba (using VidmaPy tools).

GC37

Abundance Results

Table 1: Atmospheric parameters and elemental abundances for stars GC 22 and GC 37.

Parameter	GC 22			GC 37		
T _{eff} [K]	5700 ± 200			5900 ± 200		
$\log g [\text{dex}]$	2.0 ± 0.5			2.5 ± 0.5		
[m/H] [dex]	-0.8 ± 0.2			-0.6 ± 0.2		
Element	$\log \epsilon(X)$	[X/H]	[X/Fe]	$\log \epsilon(X)$	[X/H]	[X/Fe]
Mg	-4.59	-0.09	+0.71	-4.39	+0.11	+0.71
Y	-10.63	-0.80	-0.00	-9.43	+0.40	+1.00
Ba	-9.21	+0.66	+1.46	-9.51	+0.36	+0.96
Fe	-5.34	-0.80	0.00	-5.14	-0.60	0.00

- GC22 and GC37 show **strong s-process enhancement**, especially in Ba.
- Suggests influence of intermediate-mass AGB stars in IC 10's past.

Significance of [Mg/Fe] ≈ +0.71 in IC 10 Globular Clusters

Novel Measurement:

- First spectroscopic determination of [Mg/Fe] ≈ +0.71 in GCs GC22 and GC37 of IC 10.
- \circ To our knowledge, this is the first detailed α -element abundance measurement in these clusters.

• Unusually High [Mg/Fe]:

- $[Mg/Fe] \approx +0.7$ is exceptionally high for a dwarf irregular galaxy.
- Comparable values are typically found in early Milky Way halo stars, not in systems like IC 10.

• Implications for Chemical Evolution:

- Suggests rapid early star formation and dominance of core-collapse supernovae (Type II).
- o Indicates minimal contribution from Type Ia supernovae, which usually lower [α /Fe] over time.

Deviation from Expected Trends:

- Most dwarf galaxies exhibit lower [Mg/Fe] ratios (typically +0.2 to +0.4) due to:
 - Prolonged star formation histories.
 - Delayed enrichment by Type Ia supernovae.

Scientific Impact:

- o Points to a brief, intense early starburst phase in IC 10.
- Reinforces the hypothesis that chemical enrichment in low-mass galaxies can be extremely inhomogeneous and burst-driven.

• Literature Context:

- \circ Previous studies (e.g., Magrini et al. 2009; Sharina et al. 2010) focused on [Fe/H] and [O/H], not detailed α -element abundances.
- This result fills a gap in the chemical abundance data for IC 10's old stellar populations.

Chemical Evolution Model: OMEGA

- One-zone open-box model (Côté et al. 2019).
- Tracks:
 - Gas mass, SFR, outflows/inflows
 - Stellar feedback from CCSNe, AGB, SNe Ia
- Flexible setup for dwarf galaxies.
- Inputs: SFE, inflow law, yields, IMF.

Be sure not to miss Guru Prasad's talk on this topic on Frtiday!

Conclusion

- New abundance determinations in IC 10 globular clusters.
- OMEGA model accurately reproduces observed trends.
- Highlights:
 - Prolonged AGB enrichment
 - Slower chemical evolution in dwarf galaxies

The discovery of [Mg/Fe] \approx +0.71 in IC 10's globular clusters reveals a previously unrecognized early α -enhanced enrichment episode, offering new insight into the galaxy's rapid and bursty chemical evolution, and marks a significant step forward in understanding stellar populations in dwarf irregular systems.

THANK YOU FOR YOUR ATTENTION!

Credit: IC 10: Image taken by Hubble Space Telescope. © NASA, ESA, F. Bauer [435]