COREA Detector and Perspectives for the Measurement of 12 **C** $(\alpha, \gamma)^{16}$ **O** Reactions at BIBA

HELIUM25

Jul 21 – 25, 2025 Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Jung Keun Ahn

(Korea University)

¹²C(α , γ)¹⁶O Reaction with COREA Detector

Superconducting magnet

Carbon Oxygen Reaction Experiment with Active-target TPC

$^{12}\mathrm{C}(lpha,\gamma)^{16}\mathrm{O}$ Cross-Sections and Event Rates

12 C(α , γ) 16 O Measurement with COREA Detector

- 500-keV/u 100 p μ A ¹²C^{q+} ion beam.
- Large acceptance windowless ⁴He gas TPC
- \bigcirc LaBr₃ detector array for the E1/E2 capture ratio measurement
- \circ Coincidence measurement of recoil ¹⁶O and γ
- \bigcirc Measurement of p/q with the 3 T magnet (dE/dx in TPC)

KBSI Busan Ion Beam Accelerator (BIBA)

- 28-GHz ECRIS + 500-keV/u RFO at 81.25 MHz / 100 kW
- BIBA currently delivers low-energy ion beams with the 28-GHz ECRIS
- A full operation is anticipated in late 2025.

3-T Conduction-cooled Superconducting Magnet

^aS.H. Kim and J.K. Ahn, NIMA1049, 168062(2023).

Active Target TPC (aTPC)

O The aTPC prototype reads 1000 channels using four AsAd boards of GET electronics, and operate with a gas mixture of a 0.05–0.5 atm He/CO_2 , or He/iC_4H_{10} . It has a wire-type field cage and amplifies signals with triple GEMs.

Bench Test of Active Target TPC (aTPC)

Performance tests using an ²⁴¹Am source are underway for different gas mixtures (P10, He/CO₂, He/iC₄H₁₀) and pressures.

100 Torr
150 Torr
200 Torr

- 250 Torr

Active Target TPC (aTPC) with a Gating GEM

304

 Blocking the high-intensity beam region to mitigate space charge and ion backflow, which ensures stable operation.

Slide 8

Gating Operation

Simulation on the aTPC Performance

Effective Charge States of Recoil ¹⁶O^{q+}

5 496 MaV

- Recoil nuclei quickly take up and/or lose atomic electrons in He gas to change their charge states.
- A focal-plane spectrometer measures $Q_{\rm eff}$ of $^{12}C^{q+}$ and $^{16}O^{q+}$ in He gas at different energies and gas pressures. Slide 11

LaBr₃(Ce) γ -ray Detector Array

KIST 2MV Pelletron and KU Beamline

KIST Advanced Analysis Center (Seoul) (6MV Tandetron/2MV Pelletron)

$$^{4}\text{He}^{2+}, E=3.9$$
 MeV, $I=1.2-2~\mu\text{A}$ $^{12}\text{C}^{2+}, E=5.92$ MeV, $I=3~\mu\text{A}$ / $^{12}\text{C}^{3+}, E=7.85$ MeV, $I=10~\mu\text{A}$ $^{12}\text{C}^{4+}, E=9.80$ MeV, $I=3~\mu\text{A}$ / $^{12}\text{C}^{5+}, E=11.75$ MeV, $I=50~\text{nA}$

Gamma-ray Energy Spectra from 27 Al $(p, \gamma)^{28}$ Si

Performance of LaBr₃(Ce) γ -ray Detector Array

Triggerless Streaming-Mode Data Acquisition

• We successfully collected data using a triggerless streaming-mode DAQ system.

Our Challenges for the ${}^{12}C(\alpha, \gamma){}^{16}O$ Measurement

- A small detector prototype will demonstrate the operation principle using high-intensity beams in late 2025.
- The COREA experiment is scheduled to run for three years, starting in late 2026, after the beam commissioning is completed.

