Spectral Distribution Method to α -Induced Reactions in Stellar He-Burning Environments

G. Saxena

Department of Physics (H&S), Govt. Women Engineering College, Ajmer-305002, India

> HELIUM25 Friday 25 July 2025

Stellar helium-burning is a critical phase in the evolution of low- and intermediate-mass stars. Helium burning occurs in stellar cores and shells after hydrogen exhaustion, at $T_9 \sim 0.1-0.4$ GK.
Dominant energy-producing reactions:
□ Triple- α : $3\alpha \rightarrow {}^{12}C + \gamma$
\square Carbon buildup: ${}^{12}C(\alpha, \gamma)^{16}O$

- ☐ The key competing reactions on ²²Ne:
 - \square ²²Ne(α ,n)²⁵Mg (neutron source for the s-process)
 - \square ²²Ne(α,γ)²⁶Mg (neutron sink, reduces neutron availability)
- □ Neutron production in this phase drives the s-process nucleosynthesis of heavy elements. The competing $^{22}Ne(\alpha,\gamma)^{26}Mg$ reaction reduces neutron flux by diverting material into non-neutron-producing pathways.
- □ At low temperatures ($T_9 < 0.2 GK$):
 - \square (α, γ) dominates (below neutron threshold)
- □ At higher temperatures ($T_9 > 0.25 GK$):
 - \square (α, n) becomes significant and overtakes
 - Provides neutrons for the s-process

Precise knowledge of the competition between these two channels is essential to constrain neutron production and heavy-element yields.
Recent experiments (e.g., LUNA) have improved resonance strength measurements, but large uncertainties persist at stellar energies.
Accurate reaction rates of these channels are crucial for modeling stellar nucleosynthesis.
Nuclear level densities and reaction inputs carry significant uncertainties at relevant stellar energies.
This work applies the Spectral Distribution Method (SDM) to improve or induced reaction predictions in stellar environments

Spectral Distribution Method (SDM): Concept & **Applications**

- □ SDM: A statistical shell-model based approach
 - Describes nuclear many-body systems using moments of the Hamiltonian.
 - Assumes strength distributions follow a Gaussian (or modified) Gaussian) shape.
- Why use SDM?
 - Avoids full diagonalization of large shell-model spaces.
 - □ Provides microscopic, parity-dependent level densities (NLDs) and transition strengths.
- Applications:
 - \square Neutron-induced reactions: (n,γ) , (n,p), (n,α)
 - \square Proton-induced reactions: (p, γ), (p,n)
- \square Alpha-induced reactions: (α, γ) , (α, n) □ SDM-derived inputs are implemented in statistical model
 - codes like TALYS.

Reference: T. Ghosh et al., Phys. Rev. C 105, 044320 (2022).

Spectral Distribution Method: Formalism

■ **Strength distribution:** The transition strength between initial and final states is modeled as:

$$S(E) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(E - \bar{E})^2}{2\sigma^2}\right)$$

where:

- \Box $E = \langle H \rangle$: centroid of the Hamiltonian.
- \Box $\sigma^2 = \langle H^2 \rangle \langle H \rangle^2$: variance.
- ☐ **Level density:** The many-body level density is similarly given by:

$$\rho(E) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(E-\bar{E})^2}{2\sigma^2}\right)$$

 \Box These moments (\bar{E}, σ^2) are computed from the nuclear shell-model Hamiltonian in the chosen configuration space.

G. Saxena [India] HELIUM25 2025-07-23

Spectral Distribution Method: Workflow

SDM provides microscopic inputs to statistical models for predicting nuclear reaction observables.

G. Saxena [India] HELIUM25 2025-07-23

Nuclear Level Density (NLD) from SDM

- $^{50}V(n,\gamma)^{51}V$, $^{54}Fe(n,\gamma)^{55}Fe$ and 58 Ni $(n, \gamma)^{59}$ Ni.
- SDM provides microscopic, spin- and parity-dependent NI Ds.
- Consistent with experimental systematics.
- Used as input to statistical model codes (e.g., TALYS).

Reference: Sangeeta, T. Ghosh, B. Maheshwari, G. Saxena et al., Phys. Rev. C 105, 044320 (2022)

Cross Section Predictions of a Few (n,γ) Reactions

Reference: Sangeeta, T. Ghosh, B. Maheshwari, G. Saxena et al., Phys. Rev. C 105,

Cross Section Predictions: (n, p) Reaction: 58 Ni(n, p) 58 Co

Reference: A. Hingu, G. Saxena et al., Chin. Phys. C 48, 024001 (2024)

Astrophysical Reaction Rates

- Reaction rates with SDM-derived NLDs.
- Critical for s-process modeling.
- Consistent with stellar nucleosynthesis predictions.

Reference: Sangeeta, T. Ghosh, B. Maheshwari, G. Saxena et al., Phys. Rev. C 105, 044320 (2022)

NLD for ²⁵Mg and ²⁶Mg

Nuclear Level Density for $^{25}\mathrm{Mg}$ (SDM vs.

Nuclear Level Density for ²⁶Mg (SDM vs.

models) models)

SDM-derived NLDs show good agreement with RIPL-3 data and models, improving predictive power for $^{22}\text{Ne}(\alpha,n)$ and $^{22}\text{Ne}(\alpha,\gamma)$ reactions.

Preliminary Results: Cross Section and Reaction Rates

Cross section for $^{22}Ne(\alpha, n)^{25}Mg$

Astrophysical reaction rates for $^{22}Ne(\alpha, \gamma)^{26}Mg$

SDM-based predictions show promising agreement with available data and trends, supporting their role in stellar nucleosynthesis modeling.

²²Ne(α , n)²⁵Mg and ²²Ne(α , γ)²⁶Mg competition

- ☐ The two reactions compete as neutron **source** and neutron sink in He-burning environments.
- \square At $T_9 < 0.3$, (α, γ) dominates reduces free neutrons (sink).
- \square At $T_9 > 0.3$, (α, n) becomes dominant provides neutrons for s-process (source).
- The balance between these rates influences stellar nucleosynthesis and isotopic abundances.

G. Saxena [India] HELIUM25 2025-07-23

Conclusion

The Spectral Distribution Method (SDM) provides a microscopic and computationally efficient approach to calculate level densities with spin and parity dependence.
SDM-derived inputs improve predictions of cross sections and astrophysical reaction rates for He-burning reactions.
The balance between $^{22}\mathrm{Ne}(\alpha, \textit{n})$ and (α, γ) rates crucially determines neutron availability for s-process nucleosynthesis.
SDM predictions show good agreement with experimental data and established models, enhancing confidence in stellar models.
Future work: extend SDM to other key reactions, refine parity/spin-resolved inputs, and explore sensitivity in full reaction networks

Thank you for your attention!

Acknowledgements

- ☐ I would like to express my gratitude to the following research group members:
 - Prof. B. K. Agrawal, SINP, India
 - ☐ Dr. Siddarth Parashari, Ljubljana, Slovenia
 - ☐ Dr. T. Ghosh, University of Zagreb, Zagreb, Croatia
- ☐ I am deeply grateful to Prof. Nils Paar for his kind hospitality during my stay at the University of Zagreb, Croatia.

HELIUM25 2025-07-23

Thank you. Questions are welcome.

