Spectral Distribution Method to α -Induced Reactions in Stellar He-Burning Environments G. Saxena Department of Physics (H&S), Govt. Women Engineering College, Ajmer-305002, India > HELIUM25 Friday 25 July 2025 | Stellar helium-burning is a critical phase in the evolution of low- and intermediate-mass stars. Helium burning occurs in stellar cores and shells after hydrogen exhaustion, at $T_9 \sim 0.1-0.4$ GK. | |---| | Dominant energy-producing reactions: | | □ Triple- α : $3\alpha \rightarrow {}^{12}C + \gamma$ | | \square Carbon buildup: ${}^{12}C(\alpha, \gamma)^{16}O$ | - ☐ The key competing reactions on ²²Ne: - \square ²²Ne(α ,n)²⁵Mg (neutron source for the s-process) - \square ²²Ne(α,γ)²⁶Mg (neutron sink, reduces neutron availability) - □ Neutron production in this phase drives the s-process nucleosynthesis of heavy elements. The competing $^{22}Ne(\alpha,\gamma)^{26}Mg$ reaction reduces neutron flux by diverting material into non-neutron-producing pathways. - □ At low temperatures ($T_9 < 0.2 GK$): - \square (α, γ) dominates (below neutron threshold) - □ At higher temperatures ($T_9 > 0.25 GK$): - \square (α, n) becomes significant and overtakes - Provides neutrons for the s-process | Precise knowledge of the competition between these two channels is essential to constrain neutron production and heavy-element yields. | |---| | Recent experiments (e.g., LUNA) have improved resonance strength measurements, but large uncertainties persist at stellar energies. | | Accurate reaction rates of these channels are crucial for modeling stellar nucleosynthesis. | | Nuclear level densities and reaction inputs carry significant uncertainties at relevant stellar energies. | | This work applies the Spectral Distribution Method (SDM) to improve or induced reaction predictions in stellar environments | #### Spectral Distribution Method (SDM): Concept & **Applications** - □ SDM: A statistical shell-model based approach - Describes nuclear many-body systems using moments of the Hamiltonian. - Assumes strength distributions follow a Gaussian (or modified) Gaussian) shape. - Why use SDM? - Avoids full diagonalization of large shell-model spaces. - □ Provides microscopic, parity-dependent level densities (NLDs) and transition strengths. - Applications: - \square Neutron-induced reactions: (n,γ) , (n,p), (n,α) - \square Proton-induced reactions: (p, γ), (p,n) - \square Alpha-induced reactions: (α, γ) , (α, n) □ SDM-derived inputs are implemented in statistical model - codes like TALYS. Reference: T. Ghosh et al., Phys. Rev. C 105, 044320 (2022). #### **Spectral Distribution Method: Formalism** ■ **Strength distribution:** The transition strength between initial and final states is modeled as: $$S(E) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(E - \bar{E})^2}{2\sigma^2}\right)$$ where: - \Box $E = \langle H \rangle$: centroid of the Hamiltonian. - \Box $\sigma^2 = \langle H^2 \rangle \langle H \rangle^2$: variance. - ☐ **Level density:** The many-body level density is similarly given by: $$\rho(E) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(E-\bar{E})^2}{2\sigma^2}\right)$$ \Box These moments (\bar{E}, σ^2) are computed from the nuclear shell-model Hamiltonian in the chosen configuration space. G. Saxena [India] HELIUM25 2025-07-23 #### **Spectral Distribution Method: Workflow** SDM provides microscopic inputs to statistical models for predicting nuclear reaction observables. G. Saxena [India] HELIUM25 2025-07-23 #### Nuclear Level Density (NLD) from SDM - $^{50}V(n,\gamma)^{51}V$, $^{54}Fe(n,\gamma)^{55}Fe$ and 58 Ni $(n, \gamma)^{59}$ Ni. - SDM provides microscopic, spin- and parity-dependent NI Ds. - Consistent with experimental systematics. - Used as input to statistical model codes (e.g., TALYS). Reference: Sangeeta, T. Ghosh, B. Maheshwari, G. Saxena et al., Phys. Rev. C 105, 044320 (2022) #### Cross Section Predictions of a Few (n,γ) Reactions Reference: Sangeeta, T. Ghosh, B. Maheshwari, G. Saxena et al., Phys. Rev. C 105, ### Cross Section Predictions: (n, p) Reaction: 58 Ni(n, p) 58 Co Reference: A. Hingu, G. Saxena et al., Chin. Phys. C 48, 024001 (2024) #### **Astrophysical Reaction Rates** - Reaction rates with SDM-derived NLDs. - Critical for s-process modeling. - Consistent with stellar nucleosynthesis predictions. Reference: Sangeeta, T. Ghosh, B. Maheshwari, G. Saxena et al., Phys. Rev. C 105, 044320 (2022) #### NLD for ²⁵Mg and ²⁶Mg Nuclear Level Density for $^{25}\mathrm{Mg}$ (SDM vs. Nuclear Level Density for ²⁶Mg (SDM vs. models) models) SDM-derived NLDs show good agreement with RIPL-3 data and models, improving predictive power for $^{22}\text{Ne}(\alpha,n)$ and $^{22}\text{Ne}(\alpha,\gamma)$ reactions. #### **Preliminary Results: Cross Section and Reaction** Rates Cross section for $^{22}Ne(\alpha, n)^{25}Mg$ Astrophysical reaction rates for $^{22}Ne(\alpha, \gamma)^{26}Mg$ SDM-based predictions show promising agreement with available data and trends, supporting their role in stellar nucleosynthesis modeling. #### ²²Ne(α , n)²⁵Mg and ²²Ne(α , γ)²⁶Mg competition - ☐ The two reactions compete as neutron **source** and neutron sink in He-burning environments. - \square At $T_9 < 0.3$, (α, γ) dominates reduces free neutrons (sink). - \square At $T_9 > 0.3$, (α, n) becomes dominant provides neutrons for s-process (source). - The balance between these rates influences stellar nucleosynthesis and isotopic abundances. G. Saxena [India] HELIUM25 2025-07-23 #### **Conclusion** | The Spectral Distribution Method (SDM) provides a microscopic and computationally efficient approach to calculate level densities with spin and parity dependence. | |--| | SDM-derived inputs improve predictions of cross sections and astrophysical reaction rates for He-burning reactions. | | The balance between $^{22}\mathrm{Ne}(\alpha, \textit{n})$ and (α, γ) rates crucially determines neutron availability for s-process nucleosynthesis. | | SDM predictions show good agreement with experimental data and established models, enhancing confidence in stellar models. | | Future work: extend SDM to other key reactions, refine parity/spin-resolved inputs, and explore sensitivity in full reaction networks | Thank you for your attention! #### **Acknowledgements** - ☐ I would like to express my gratitude to the following research group members: - Prof. B. K. Agrawal, SINP, India - ☐ Dr. Siddarth Parashari, Ljubljana, Slovenia - ☐ Dr. T. Ghosh, University of Zagreb, Zagreb, Croatia - ☐ I am deeply grateful to Prof. Nils Paar for his kind hospitality during my stay at the University of Zagreb, Croatia. HELIUM25 2025-07-23 # Thank you. Questions are welcome.