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• Motivations

o Stellar evolution

o Astrophysical origin of 19F is unclear

o Discrepancies in previous measurements

• Solid Ti15N target γ-spectroscopy experiment in forward kinematics

o Experimental setup

o Energy, strength, and alpha width from γ-spectroscopy

• Summary and outlooks
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Astrophysical Origin of 19F

• Asymptotic Giant Branch (AGB) stars

o Direct observation: Overabundance up to a factor of 50 times solar (Jorissen et 

al., A&A, 1992)

o 14N(α,γ)18F(β+)18O(p,α)15N(α,γ)19F

o 14N(n,p)14C(α,γ)18O(p,α)15N(α,γ)19F (Forestini et al., A&A, 1992)

• Wolf-Rayet stars

o 19F is synthesized at the beginning of He-burning (Meynet and Arnould, A&A, 2000)

o 14N(α,γ)18F(β+)18O(p,α)15N(α,γ)19F

• Core-collapse supernovae

o Neutrino spallation on 20Ne (Woosley and Haxton, Nature, 1988)

o 20Ne(ν,ν’p)19F

19F origin and abundance in the solar neighborhood?
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Debated

Within observational 

uncertainties, but not 

main source (Abia et al., 

A&A, 2019; Vescovi et al., 

A&A, 2021)



15N(α,γ)19F Reaction Rate in AGB Stars

• Ec.m. = 364 keV resonance 
strength has an uncertainty of 
100% (de Oliveira et al., Nuc. Phys. A, 1996)

• Direct Capture (DC) 
contribution has 40% 
uncertainty (Iliadis et al., Nuc. Phys. A, 2010)

• Tails from two resonances at 
Ec.m. = 1323 and 1487 keV

T < 0.3 GK

Figure from Di Leva et al., Phys. Rev. C, 2017

Resonance reaction rate:

𝑁𝐴 𝜎𝑣 = 𝑁𝐴
2𝜋

𝜇𝑘𝑇
3/2ħ2 𝜔𝛾 𝑒−𝐸𝑅/𝑘𝑇

Resonance strength:

𝜔𝛾 = 𝜔
Γ𝛼Γ𝛾

Γ𝛼 + Γ𝛾
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Previous Measurements – Res. Energy

~8 keV increase

Possible lower 

excitation energy?

Ec.m. = 1323 keV

Ec.m. = 1487 keV
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Previous Measurements – Strength

Ec.m. = 1323 keV

Ec.m. = 1487 keV
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Previous Measurements – α width

Tails from two resonances at Ec.m. = 1323 and 1487 keV may increase 

reaction rate 15% due to the larger alpha widths (Di Leva et al., Phys. Rev. C, 2017)

Ec.m. = 1323 keV

Ec.m. = 1487 keV
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Nuclear Science Laboratory at ND
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Solid Target γ-spectroscopy Setup

• Ti15N target was fabricated at Forschungszentrum Karlsruhe

o Reactive sputtering of Ti in a 99.5% enriched 15N environment.

o Stoichiometry of 1:1 with a tolerance of < 2%

• Detector was set at 55° to minimize any angular distribution effects

• Detector energy and efficiency calibration 

o 60Co and 27Al(p,γ)28Si Ep = 992 keV narrow resonance

o Energy uncertainty < 1 keV. Efficiency uncertainty < 7%.

Liquid N2 cooled Copper tube
Bias voltage: -400 V

HPGe
detector
at 55 deg.

4He+

Water cooled 
target at 45 deg.

Moveable platform
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γ-ray Spectrum

• Deduced the excitation level 
(resonance energy) using
Doppler shifted γ-ray energy

Ec.m. = 1323 keV

Ec.m. = 1487 keV
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Comparison to Previous Measurements

Ec.m. = 1323 keV

Ec.m. = 1487 keV

• Discrepancies in energy, strength, α width
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Deducing Strength and α Width

• Fitting of the Breit Wigner cross section

• Monte Carlo procedure to deduce 
uncertainties from beam energy loss and 
stopping power.

Beam energy 

resolution

Target 

inhomogenity
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Resonance Strength Results

• Both strengths are compatible with most literature values
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Resonance Strength results

Re-evaluation of Dixon 
and Storey two relative 
comparison 
measurements

• 14N(α,γ)18F

Eα = 1532 keV 
resonance

• 15N(p,α1γ)12C

Ep = 892 keV 
resonance
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17 higher levels corresponding strengths were calibrated against 1323 keV



α Width Results

Гtot = Гα + Гγ ≈ Гα

• Larger α width for Ec.m. = 1487 keV resonance

Ec.m. = 1323 keV

Ec.m. = 1487 keV
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Impact to Reaction Rate

• Reaction rate calculated using 
RatesMC (Longland et al., Nuc. Phys. A, 2010)

https://github.com/rlongland/RatesMC

• Proposed energy change in the higher 
energy resonance has negligible 
impact to the reaction rates

• Confirmed the 15% reaction rate 
increase by Di Leva et al. from the 
larger alpha widths at T < 0.1 GK

T < 0.3 GK
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Future Work and Conclusions

15N(α,γ)19F:

• Discrepancies in α width measurements

o Zero-degree elastic scattering measurements 
on St. George (Adam Sanchez)

o Elastic scattering measurements on 
RHINOCEROS gas target at NSL in forward 
kinematics

• Direct measurements of the 364 and 536 keV 
resonances are needed.

• Impact of reaction rate increase on 19F 
synthesis in at low-mass AGB stars relevant 
temperatures needs to be investigated.
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Stellar Evolution

Figure from: https://imagine.gsfc.nasa.gov/educators/lessons/xray_spectra/background-lifecycles.html
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AGB 

Stars



15N(α,γ)19F in AGB Stars

Thermal Pulsing (TP):

• Accumulation of He from CNO 
cycle in H burning shell

• Temperature and energy output 
increase in He burning shell

• Create a convection zone that 
mixes H, He, and CNO products

Third Dredge Up (TDU)

19F synthesis

Figure from Iliadis, Nuclear Physics of Stars, 2015

14N(α,γ)18F(β+)18O(p,α)15N(α,γ)19F
14N(n,p)14C(α,γ)18O(p,α)15N(α,γ)19F
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Re-evaluation of Dixon and Storey

Re-evaluation of Dixon and Storey two relative 
comparison measurements

• 14N(α,γ)18F

Eα = 1532 keV resonance

• 15N(p,α1γ)12C

Ep = 892 keV resonance

~40% decrease in strength comes from the 12C (g.s.) 
background in the charged particle spectroscopy by 
Leavitt et al.
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Figure from Leavitt et al., Nuc. Phys. A, 1983
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