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Upper-stellar-mass gap ?
• Single stars with masses, , end their lives in core collapse 

supernovae and forms black holes (BHs). 

• Stars with masses              Electron-positron pair production 

‣               Pulsational pair-instability supernova 
(PPISN) 

‣               Pair-instability supernova (PISN) 

•       Photodisintegration      Core collapse supernovae

20 M⊙ ≲ MZAMS ≲ 100 M⊙

MZAMS ≳ 100 M⊙

100 M⊙ ≲ MZAMS ≲ 130 M⊙

130 M⊙ ≲ MZAMS ≲ 250 M⊙

MZAMS ≳ 250 M⊙
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Completely destroys the star Mass-gap



Boundaries of mass-gap ??
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This work (DeBoer et al 2017)

Farmer et al 2020 (Kunz et al 2002)

• The final fate of the stars also depend 
heavily on  reaction rate, i.e., 
C/O ration in the core after helium burning. 

• Depending on C/O ratio, the cores can 
undergo or skip the carbon burning, and set 
explosive oxygen burning. 

• The plot uses the  reaction rate 
provided in deBoer et. al. (2017) which 
considered the entirety of existing 
experimental data, aggregating 60 year of 
experimental data consisting of more than 
50 independent experimental studies. 
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 reaction rate12C(α, γ)16O
• The reaction rate per particle pair is given by,  

• Where                                                        and, 
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S(E) = σ(E) E e2πη(E)
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From GW, we can measure                               Mgap
BH ⟨σv⟩ S(E) |E=E0



Observations of GWs from BBHs
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m1

m2

h+,×(t; ⃗θ)

⃗θ ≡ {m1, m2, ⃗S1, ⃗S2, DL, ι, tc, ϕc, ψ, α, δ}

d(t) = h(t) + n(t)

Search Pipelines
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Parameter Inference: Bayes’ Theorem
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• Let’s say we know that the data segment  contains a GW signal. Then the 
distribution of the parameters can be reconstructed using Bayes’ theorem as follows:

d

Prior
Likelihood

Posterior

Evidence



Example: GW190521
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m1 = 85+21
−14 M⊙

Farmer et al. 2019

Abott et al. 2020

m2 = 66+17
−18 M⊙

σC12 = − 2.4+0.6

S(300 keV) = 73+11 keV b

Mup
gap



GW population analysis
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Injection study at O4/O5 sensitivity
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• The primary mass can be measured with precision better than in the mass gap.< 40 %



Injection study at O4/O5 sensitivity
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• Most of the BBH signals whose primary mass lie in the mass gap will be faithfully placed 
in the mass gap from GW observations during O4/O5. 



Summary
• GW observations from upcoming LIGO-Virgo-KAGRA runs (e.g., O4) 

are expected to provide much better measurement of primary mass of 
the BBH signals. 

• This, in turn, should lead to much better estimation of lower edge of 
mass-gap. 

• This will further tighten the constraints on the astrophysical S-factor.
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