HELIUM25 - Helium burning and perspectives for underground labs Output Dresden, July 21, 2025

Helium burning and its role in the synthesis of key heavy elements in rotating massive stars

Lorenzo Roberti, INFN – Laboratori Nazionali del Sud, Catania, Italy

Main collaborations:

Pandora + AsFiN

Budapest group: M. Pignatari, M. Lugaro

Rome + Berkeley group: M. Limongi, A. Chieffi, A. Falla, L. Boccioli

NuGriD collaboration

Helium burning in massive stars

- Leading reactions: 3α and $^{12}C(\alpha,\gamma)^{16}O$;
- Efficient $^{12}C(\alpha,\gamma)^{16}O$: C/O<1;
- 12 C(α , γ) 16 O determines the advanced evolution: compactness, explodability, black hole formation, shell interactions (C-O shell merger);
- Main site of weak s-process at ~solar metallicity via the activation of 22 Ne(α ,n) 25 Mg (in competition with 22 Ne(α , γ) 26 Mg).

The s-process during central He burning

• 14 N(α , γ) 18 F(β +) 18 O(α , γ) 22 Ne at Tc \sim 200 MK, followed by 22 Ne(α ,n) 25 Mg at Tc \sim 300 MK;

Efficiency scales with the initial metallicity

 depends on ¹⁴N left by CNO cycle;

 Limited by the metallicity and low neutron-to-seed ratio: only able to produce weak s-process component (Sr, Y, Zr);

• The bulk of the s-process yields ejected after the CCSN is produced in central He burning; marginal contribution from the He and C burning shells.

The s-process during central He burning

The s-process during central He burning

Helium burning in rotating massive stars

- Mixing between convective zones \rightarrow longer central He burning phase;
- More efficient $^{12}C(\alpha,\gamma)^{16}O$: C/O <<1;
- Important in H and He central burning phases: advanced phases (C, Ne, O, Si burning) too fast compared to secular instabilities;
- Increased efficiency of the s-process (if envelope is not lost): faster rotating stars (more compact structure), higher neutron density, higher neutron-to-seed ratio.

He convective core	He radiative core	р	H-rich zone
⁴ He → ¹² C		р	
		р	

Non rotating star

He convective core

 $^{4}\text{He} \rightarrow ^{12}\text{C}$

He radiative core

12C p
 12C p
 12C p

H-rich zone

Rotating star

05/07/2024

Lorenzo Robert

¹⁹F production in rotating massive stars

• ¹⁹F is produced through the chain of reactions: $^{14}N(\alpha, \gamma)^{18}F(\beta^+)^{18}O(p,\alpha)15N(\alpha, \gamma)^{19}F$

• It requires CNO, p, n, and α in the same environment (neutrons are provided by $^{14}N(n,p)^{14}C$);

AGB stars or He burning in shell in rotating massive stars;

Formation of the convective He shell in the CNO pocket.

¹⁹F production in rotating massive stars

Comparison with observations

Comparison with observations

Summary and conclusions

- He burning phase is fundamental to determine the final fate of a massive star;
- Main site for s-process in massive stars;
- Rotation increases the efficiency of the s-process and ¹⁹F nucleosynthesis (CNO pocket) in He burning;
- Very low metallicity rotating massive stars can produce beyond the weak s-process component and match the abundance ratios of the most metal poor stars observed today.