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Multiscale modeling of materials under extreme conditions

e Modeling of materials under extreme conditions across several length and
time scales

e Important for advanced applications (astrophysics, materials discovery, ...)
e Combination of multiple simulation methods required
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FT-DFT and surrogates CASUS

e Simulations via KS-DFT at = > 0K, approximating grand canonical ensemble
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FT-DFT and surrogates
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Framework for learning LDOS: MALA

Atomic configuration

SNAP descriptors

O PyTO rC h Neural Network

Local density of
states

{ O ESPRESSO Total free energy,
atomic forces

e Encoding of local information using
SNAP descriptors (LAMMPS code)

e Feed-foward neural networks built and
trained using PyTorch

e |ocal Density of States post-processed
using analytical relations and
QuantumESPRESSO

e Data generation done via VASP (DFT-MD)
and QE (DFT, DFT-MD)
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Results I: Proof of concept (Aluminium at 933K) 8 S
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Results Il: Size transfer (Beryllium at 298K)
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Results Ill: Hyperparameter optimization (Aluminium at 298K) (‘ cASUS
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e Accurate surrogate models can be created based on LDOS
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Conclusion / Outlook Cycnsys
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Accurate surrogate models can be created based on LDOS

Size transfer between models possible if training data is carefully selected

Application to larger temperatures

Calculation of physical quantities of interest via MD or Monte-Carlo
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MALA cooperation partners L
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I.aboratones National Laboratory
CASUS

CENTER FOR ADVANCED
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Check MALA out on GitHub: https://github.com/mala-project
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8 J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson,
A. Cangi, and S. Rajamanickam.

Accelerating finite-temperature kohn-sham density functional theory with deep
neural networks.

Phys. Rev. B, 104:035120, Jul 2021.
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Thank you for your attention!
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