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Multiscale modeling of materials under extreme conditions

• Modeling of materials under extreme conditions across several length and
time scales

• Important for advanced applications (astrophysics, materials discovery, ...)
• Combination of multiple simulation methods required

MALA: Learning the electronic structure of materials with neural networks Lenz Fiedler 3



Multiscale modeling of materials under extreme conditions

• Modeling of materials under extreme conditions across several length and
time scales
• Important for advanced applications (astrophysics, materials discovery, ...)

• Combination of multiple simulation methods required

MALA: Learning the electronic structure of materials with neural networks Lenz Fiedler 3



Multiscale modeling of materials under extreme conditions

• Modeling of materials under extreme conditions across several length and
time scales
• Important for advanced applications (astrophysics, materials discovery, ...)
• Combination of multiple simulation methods required

MALA: Learning the electronic structure of materials with neural networks Lenz Fiedler 3



FT-DFT and surrogates

• Simulations via KS-DFT at τ > 0K , approximating grand canonical ensemble[
−12∇

2 + vτS (r)
]
φj(r) = ετj φj(r) , (1)

n(r) =
∑
j
f τ (ετj ) |φj(r)|2 , (2)

ABOtotal[n] = TS[φj]− τSS[φj] + EH[n] + EτXC[n] + Eei[n] + Eii , (3)

• Large computational cost (esp. at higher temperatures)
• High temperature require large number of KS wave functions
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Framework for learning LDOS: MALA

• Encoding of local information using
SNAP descriptors (LAMMPS code)
• Feed-foward neural networks built and
trained using PyTorch
• Local Density of States post-processed
using analytical relations and
QuantumESPRESSO
• Data generation done via VASP (DFT-MD)
and QE (DFT, DFT-MD)
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Results I: Proof of concept (Aluminium at 933K)
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Results II: Size transfer (Beryllium at 298K)
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Results III: Hyperparameter optimization (Aluminium at 298K)
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Conclusion / Outlook

• Accurate surrogate models can be created based on LDOS

• Size transfer between models possible if training data is carefully selected
• Application to larger temperatures
• Calculation of physical quantities of interest via MD or Monte-Carlo
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MALA cooperation partners

Check MALA out on GitHub: https://github.com/mala-project
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Thank you for your attention!
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