

Uncertainty quantification for neural network models

HELMHOLTZ

Steve Schmerler Helmholtz AI @HZDR | HZDR ML symposium / 2021-12-06

Motivation

- **u** trained ML model f, provide prediction f(x) plus "error bar" / model confidence
- uncertainty quantification critical in many neural network (NN) applications (driving, health, ...)
- Helmholtz AI voucher with A. Cangi, L. Fiedler, S. Kulkarni @CASUS

- out-of-distribution detection for NN surrogate models (detect x very dissimilar to training data)
- essential part of an active learning loop

Toy data

 add regions of missing data

Gaussian process regression baseline

- GP: Bayesian method that models a Gaussian posterior distribution $\mathcal{N}(f)$ over model functions f(x)
- provides predictions $\hat{y}(x) = \mu(x)$ and uncertainty via $\sigma(x)$

2/10

Ensembles

- **NN** models $f(x; \theta)$ provide point estimates, but no uncertainty
- "sample" n = 1, ..., N NNs $f_n(x; \theta_n)$, calculate μ (mean) and σ from N function samples ■ different random initialization for θ_n
- E train $N \times$
- **u** train each f_n until test loss $\sum_i ||f_n(x_i) y_i|| < \tau$ with convergence tolerance τ
- provides N models that fit the data equally well (defined by τ) but behave undetermined in out-of-distribution (OOD) data regions
- exploit NN's flexibility in OOD regions ("bad extrapolation")

B. Lakshminarayanan, A. Pritzel, and C. Blundell. "Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles". In: Adv. Neural Inf. Process. Syst. 30 (2017)
S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective. 2020. URL: http://arxiv.org/abs/1912.02757

Steve Schmerler | Uncertainty quantification for neural network models

Ensembles: N = 50

LeakyReLU, net: 1-100-100-1

HELMHOLTZAI

4/10

Steve Schmerler | Uncertainty quantification for neural network models

Ensembles: N = 50

HELMHOLTZAI

Ensembles: N = 5

Steve Schmerler | Uncertainty quantification for neural network models

HELMHOLTZAI

Monte Carlo dropout

- as in ensembles, generate multiple NNs by sampling
- sub-sample 1 trained NN N times using dropout layers
- simple to implement, but need to add dropout layers
- hyper parameter: dropout probability of layer(s), use for calibration

Y. Gal and Z. Ghahramani. "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning". In: *Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48.* ICML'16. New York, NY, USA: JMLR.org, 2016, pp. 1050–1059

Monte Carlo dropout

LeakyReLU, net: 1-100-100-1

HELMHOLTZAI

Steve Schmerler | Uncertainty quantification for neural network models

Monte Carlo dropout

HELMHOLTZAI

Apply as post-processing step after training (minimization of loss $\mathcal{L} \in \mathbb{R}$ as function of model parameters $\theta \in \mathbb{R}^D$ where e.g. $\mathcal{O}(D) = 10^6$).

 $\theta^* = \arg\min_{\theta} \mathcal{L}(\theta)$

E. Daxberger et al. Laplace Redux - Effortless Bayesian Deep Learning. 2021. URL: http://arxiv.org/abs/2106.14806, https://github.com/AlexImmer/Laplace

Apply as post-processing step after training (minimization of loss $\mathcal{L} \in \mathbb{R}$ as function of model parameters $\theta \in \mathbb{R}^D$ where e.g. $\mathcal{O}(D) = 10^6$).

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\theta)$$

Assume \mathcal{L} can be approximated locally at θ^* to second order (with gradient $g = \nabla \mathcal{L}|_{\theta^*}$, Hessian $H = \partial^2 \mathcal{L}|_{\theta^*}$ and $h = \theta - \theta^*$) by

$$\mathcal{L}(\theta) \approx \mathcal{L}(\theta^*) + \underbrace{g^\top h}_{=0} + \frac{1}{2} h^\top H h \,.$$

Then one can construct a probability distribution over θ (i.e. over models) such that

$$p(\theta) \approx \mathcal{N}(\theta|\theta^*, \Sigma)$$

where the covariance matrix is the inverse Hessian

$$\Sigma = H^{-1} \, .$$

E. Daxberger et al. Laplace Redux - Effortless Bayesian Deep Learning. 2021. URL: http://arxiv.org/abs/2106.14806, https://github.com/AlexImmer/Laplace

tanh, net: 1-100-100-1

 fast, several approximate methods available to scale to large models

some activations not yet supported by all Hessian approximation schemes (e.g. LeakyReLU and kron)

9/10

Summary

no free lunch, use at least two methods and compare results

- ensembles
 - easy to implement and parallelize
 - few models may be sufficient
 - use as baseline
- Laplace
 - scaling to large models needs approximate Hessian schemes, test carefully
 - quality of results depends on how well the second-order assumption of the local loss holds

