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Motivation

trained ML model f , provide prediction f(x) plus ”error bar” / model confidence
uncertainty quantification critical in many neural network (NN) applications (driving, health,
...)
Helmholtz AI voucher with A. Cangi, L. Fiedler, S. Kulkarni @CASUS

https://github.com/mala-project

out-of-distribution detection for NN surrogate models (detect x very dissimilar to training
data)
essential part of an active learning loop
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Toy data
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Gaussian process regression baseline
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GP: Bayesian method
that models a Gaussian
posterior distribution
N (f) over model
functions f(x)
provides predictions
ŷ(x) = µ(x) and
uncertainty via σ(x)
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Ensembles

NN models f(x; θ) provide point estimates, but no uncertainty
”sample” n = 1, . . . , N NNs fn(x; θn), calculate µ (mean) and σ from N function samples
different random initialization for θn

train N×
train each fn until test loss

∑
i∥fn(xi) − yi∥ < τ with convergence tolerance τ

provides N models that fit the data equally well (defined by τ) but behave undetermined in
out-of-distribution (OOD) data regions
exploit NN’s flexibility in OOD regions (”bad extrapolation”)

B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and Scalable Predictive Uncertainty
Estimation Using Deep Ensembles”. In: Adv. Neural Inf. Process. Syst. 30 (2017)
S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective.
2020. url: http://arxiv.org/abs/1912.02757
Steve Schmerler Uncertainty quantification for neural network models

http://arxiv.org/abs/1912.02757


4/10

Ensembles: N = 50

0.00

0.25

0.50

0.75

1.00

1.25 data
gt

0.00

0.25

0.50

0.75

1.00

1.25 model
data
model ± 2 std

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2 std

LeakyReLU, net:
1-100-100-1

compares well to GP
baseline
works out of the box, no
model change needed
easy to parallelize

computational cost N×
training time
prohibitive for large
models
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Ensembles: N = 5
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good news: N = 5 !
often tiny ensembles still
provide a useful
uncertainty estimate
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Monte Carlo dropout

as in ensembles, generate multiple NNs by sampling
sub-sample 1 trained NN N times using dropout layers
simple to implement, but need to add dropout layers
hyper parameter: dropout probability of layer(s), use for calibration

Y. Gal and Z. Ghahramani. “Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning”. In: Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48. ICML’16. New York, NY, USA:
JMLR.org, 2016, pp. 1050–1059
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Monte Carlo dropout
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LeakyReLU, net:
1-100-100-1

very fast, negligible
compared to training
well suited for large
models

sampled models highly
correlated → stuck with
one base model, σ less
expressive
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Monte Carlo dropout
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Laplace approximation
Apply as post-processing step after training (minimization of loss L ∈ R as function of model
parameters θ ∈ RD where e.g. O(D) = 106).

θ∗ = arg min
θ

L(θ)

Assume L can be approximated locally at θ∗ to second order (with gradient g = ∇L|θ∗ , Hessian
H = ∂2L|θ∗ and h = θ − θ∗) by

L(θ) ≈ L(θ∗) + g⊤ h︸︷︷︸
=0

+1
2

h⊤ H h .

Then one can construct a probability distribution over θ (i.e. over models) such that
p(θ) ≈ N (θ|θ∗, Σ)

where the covariance matrix is the inverse Hessian
Σ = H−1 .

E. Daxberger et al. Laplace Redux – Effortless Bayesian Deep Learning. 2021. url:
http://arxiv.org/abs/2106.14806, https://github.com/AlexImmer/Laplace
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Laplace approximation

0.00

0.25

0.50

0.75

1.00

1.25 data
gt

0.00

0.25

0.50

0.75

1.00

1.25 model
data
model ± 2 std

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

std

tanh, net: 1-100-100-1

no need to change
model
fast, several approximate
methods available to
scale to large models

some activations not yet
supported by all Hessian
approximation schemes
(e.g. LeakyReLU and
kron)
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Summary

no free lunch, use at least two methods and compare results
ensembles

easy to implement and parallelize
few models may be sufficient
use as baseline

Laplace
scaling to large models needs approximate Hessian schemes, test carefully
quality of results depends on how well the second-order assumption of the local loss holds
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