Machine-learning to better understand radiation emitted by laser-plasma interactions

ML@HZDR Symposium 2021 – Open data challenges

<u>Alexander Debus</u>, Richard Pausch, Matthew Leinhauser, Sunita Chandrasekaran, Michael Bussmann, Friedrich Bethke, Anna Willmann, Jakob Dieckmann, Nico Hoffmann

Dr. Alexander Debus

ML@HZDR Symposium 2021 | Dec 6, 2021 | Machine-learning to better understand radiation emitted by laser-plasma interactions

Challenge: Understand µm- and fs-scale dynamics

Compact plasma wakefield accelerators

Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams T. Kurz et al., Nature Communication (2021) Gas-dynamic density downramp injection in a beam-driven plasma wakefield accelerator

J. P. Couperus Cabadağ et al., Phys. Rev. Res. 3, L042005 (2021)

ML@HZDR Symposium 2021 | Dec 6, 2021 | Machine-learning to better understand radiation emitted by laser-plasma interactions

Dr. Alexander Debus

Simulating the radiation from Laser Plasma Interactions

shedding new light into the dynamics of laser-accelerated electrons

- Modeling complex plasma dynamics require simulations.
- The predicted particle dynamics not directly accessible.
- Synthetic (simulated) radiation bridges the gap between microscopic particle dynamics and observable radiation by predicting how the particles radiate.
- Radiation spectra give insight into the momentum distribution.
- Radiation provides a direct window to the µm and fs-scale dynamics of laser-plasma interactions.

Laser-plasmas radiate!

Simulating the radiation from Laser Plasma Interactions

shedding new light into the dynamics of laser-accelerated electrons

- Radiation from laser-plasma interactions is ubiquitous and experimentally accessible via imaging and spectroscopy.
- Yet, the data is hard to interpret and thus is often discarded.
- What do the radiation signatures mean? Are these robust and unambiguous?

 $\theta = 20^{\circ}$ 10^{1} 1 10-24 (1)?3 10-25 ω [ω₀] (4) 10-26 (3)? 10⁰ 10-27 10-28 (4)? 10⁻²⁹ 5 6 3 t[ps]

10-23

So what is the challenge in radiation from plasmas?

It is computationally very expensive!

Compute radiation within particle-in-cell simulation (in-situ)

Requirements

ML@HZDR S

- spectra range from IR to x-ray
- resolve coherent and incoherent radiation simultaneously
- include polarization properties
- resolve temporal evolution of spectra
- compute radiation of all **billions of particles** in PIC simulation →

 Processing must happen online during PIC (in-situ).

spectrum contains information

in a PIC simulation

10^{sh}-p¹PO^{nQa}(Matricipe particles

10² - 10⁶ frequencies and

Several 100 TB to PB of

observation directions

electron trajectories

 $\frac{\mathrm{d}^2 W}{\mathrm{d}\,\Omega\,\mathrm{d}\,\omega} = \frac{1}{16\pi^3\varepsilon_0 c} \left| \sum_{k=1}^{N_p} \int_{-\infty}^{+\infty} q_k \cdot \frac{\vec{n} \times \left[\left(\vec{n} - \vec{\beta}_k \right) \times \dot{\vec{\beta}_k} \right]}{\left(1 - \vec{\beta}_k \cdot \vec{n} \right)^2} \cdot \mathrm{e}^{\mathrm{i}\omega(t - \vec{n} \cdot \vec{r}_k(t)/c)} \,\mathrm{d}\,t \right|^2$

 $d\Omega$

So what is the challenge in radiation from plasmas?

It is computationally very expensive!

For exploring radiation signatures in a first laser wakefield acceleration simulation
Total simulation time: over 9 months

Simulation setup:

- 512 frequencies IR-VIS-UV
- 250 virtual observers on half-dome
- Computed for ~10⁹ particles at each time step
- Over 20x more compute intensive than simulation w/o radiation

ML@HZDR Symposium 2021 |

Road to Exascale for PIConGPU

Juwels Booster (Nov 2020), JSC at FZ Juelich 73 PetaFLOPS (7th Top 500, 3rd Green 500) 936 nodes, 3744 NVIDIA Volta A100s AMD EPYC Rome CPU

Summit, ORNL (2018) 200 PetaFLOPS 4,608 nodes 27,648 NVIDIA Volta V100s IBM POWER9 CPU

Frontier, ORNL (2022) > 1.5 ExaFLOPS AMD GPU hardware Cray architecture / compilers

Knowledge extraction challenge: Where are the sources of the emitted radiation?

Synthetic diagnostics

f/3.7 imaging

Huygen-Fresnel

(15° x 15° solid angle)

46.3 µm x 46.3 µm field of view

PICon GPU

Time-Integrated self-emission

ML@HZDR Symposium 2021 Dec 6, 2021 Machine-learning to better understand radiation emitted by laser-plasma interactions

20µm

Knowledge extraction challenge: What is the physics behind the emitted radiation?

Current state-of-the art of knowledge extraction: PhD student brain power and running lots of reduced-model simulations.

PhD thesis: Richard Pausch

Initial results: Reconstructing plasma dynamics by invertible neural networks

From PIC simulation over synthetic data to normalized input for the neural network

ML@HZDR Symposium 2021 | Dec 6, 2021

Machine-learning to better understand radiation emitted by laser-plasma interactions

Dr. Alexander Debus

Data Challenge: Large-scale distributed ML

Machine-learning to better understand radiation emitted by laser-plasma interactions

Conclusions

- Electromagnetic radiation from laser-plasma interactions is key to resolving plasma dynamics at the fs and µm scale.
- Physics challenge: What do radiation signatures in spectra and images mean? Which of these are robust, unambiguous and quantitative?
- Performance challange: Calculating plasma radiation for synthetic spectra and images requires high-performance computing resources at the exascale.
- Knowledge extraction challenge: Deducing from spectra and images the physics dynamics is an inverse problem involving PBytes of data.

Required steps for machine learning

- Massively distributed ML: Integrate an autoencoder approach based on point-cloud data (macroparticle positions, momenta and acceleration) into PIConGPU.
- Learning compressed representation mapped to spectral and imaging radiation diagnostic via invertible neural network.

Thank you for your attention!

Alexander Debus

"White light generation" of DRACO laser pulse in air