Machine-learning to better understand

radiation emitted by laser-plasma interactions

ML@HZDR Symposium 2021 — Open data challenges
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Challenge: Understand pm- and fs-scale dynamics
Compact plasma wakefield accelerators
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Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams
T. Kurz et al., Nature Communication (2021)

Gas-dynamic density downramp injection in a beam-driven plasma wakefield accelerator

J. P. Couperus Cabadag et al., Phys. Rev. Res. 3, L042005 (2021)
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Simulating the radiation from Laser Plasma Interactions

shedding new light into the dynamics of laser-accelerated electrons

= Modeling complex plasma dynamics require simulations. // : \
= The predicted particle dynamics not directly accessible. - B
A

= Synthetic (simulated) radiation bridges the gap between \
microscopic particle dynamics and observable radiation by |
predicting how the particles radiate.

= Radiation spectra give insight into the momentum distribution.

= Radiation provides a direct window to the um and fs-scale
dynamics of laser-plasma interactions.

Laser-plasmas radiate!
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Simulating the radiation from Laser Plasma Interactions

shedding new light into the dynamics of laser-accelerated electrons

107
= Radiation from laser-plasma interactions 10-24
IS ubiquitous and experimentally :
accessible via imaging and spectroscopy. 21075
F %2}
* VYet, the data is hard to interpret é10‘26 ;%
and thus is often discarded. - 5|3
107%
» What do the radiation signatures mean? e
Are these robust and unambiguous? 10
1072°
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. So what is the challenge in radiation from plasmas?

It is computationally very expensive!

Compute radiation within particle-in-cell simulation (in-situ)

Requirements
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radiation simultaneously

include polarization properties
resolve temporal evolution of spectra

compute radiation of all billions of particles in PIC simulation - Processing must happen
online during PIC (in-situ).
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. So what is the challenge in radiation from plasmas?
It is computationally very expensive!

= For exploring radiation signatures in a first laser wakefield acceleration simulation
Total simulation time: over 9 months

Simulation setup:
= 512 frequencies IR-VIS-UV

= 250 virtual observers on half-dome

= Computed for ~10° particles
at each time step

= Over 20x more compute intensive
than simulation w/o radiation
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. Knowledge extraction challenge:
Where are the sources of the emitted radiation?

Experiment

2w-radiation
(wavebreaking)

From electron
injection?

Simulate experimental
diagnostics lense

& -
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Synthetic diagnostics
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Knowledge extraction challenge:
What is the physics behind the emitted radiation?
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(1) Higher harmonics
(2) Wave-breaking signature
(3) Blowout signal

(4) Red-shifted scattering from
the depleted laser pulse

Current state-of-the art of knowledge extraction:
PhD student brain power and running lots of reduced-model simulations.

PhD thesis: Richard Pausch
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Initial results: Reconstructing plasma dynamics

by invertible neural networks

From PIC simulation over synthetic data to normalized input for the neural network
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Bachelor thesis: Friedrich Bethke
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. Data Challenge: Large-scale distributed ML

autoencoder

iIn-memory
streaming Data source from PIConGPU

SRR n]m I 9D unstructured point-cloud data
B For each macroparticle every time step:
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encoder
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training data
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Conclusions

Electromagnetic radiation from laser-plasma interactions is key
to resolving plasma dynamics at the fs and um scale.

Physics challenge: What do radiation signatures in spectra and images mean?
Which of these are robust, unambiguous and quantitative?

Performance challange: Calculating plasma radiation for synthetic spectra and images
requires high-performance computing resources at the exascale.

Knowledge extraction challenge: Deducing from spectra and images the physics
dynamics
IS an inverse problem involving PBytes of data.

Required steps for machine learning

" Massively distributed ML: Integrate an autoencoder approach based on point-cloud
data (macroparticle positions, momenta and acceleration) into PIConGPU.

= | earning compressed representation mapped to spectral and imaging radiation
diagnostic via invertible neural network.



Thank you for your attention!

Alexander Debus

»White light generation“ of DRACO laser pulse in air



