3D spectrum synthesis

Non-LTE

Conclusions 0000

Tools and techniques for modelling stellar spectra beyond $1\mathrm{D}/\mathrm{LTE}$

Andrew Gallagher

Leibniz-Institut für Astrophysiks (AIP), Potsdam, Germany

November 10, 2021

3D spectrum synthesis

Non-LTE 000000000000000

3D model atmospheres

3D model atmospheres ○●○○○○○○○○ 3D spectrum synthesis

Non-LTE 00000000000000 Conclusions 0000

Are stellar atmospheres horizontally homogeneous and static?

Hi-res image of solar surface

1D model representation

- Sun as typical star with outer convective envelope: horizontal T-inhomogeneities of $\Delta T \approx 1000$ K evolving on time scales of minutes
- How accurate are predictions of stellar properties based on 1D models?
 - Abundances?
 - Turbulent velocities?

	3D spectrum synthesis	Non-LTE	Conclusions
00000000			

Future of observational data

- 8m-class telescopes are capable of attaining very high quality data
- Complex stellar phenomena start to be resolvable
 - Asymmetric line profiles
 - Result from asymmetric velocity fields from stellar granulation
- 1D modelling cannot replicate this
- Observational quality will improve with new generation GIANT telescopes
 - \longrightarrow E-ELT
 - $\longrightarrow \mathsf{TMT}$

3D spectrum synthesis

Non-LTE

Conclusions 0000

3D atmosphere codes

COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions, with L=2,3

Bernd Freytag, Matthias Steffen, Hans-Günter Ludwig, Sven Wedemeyer, & W. Schaffenberger

local models

global models

rotation models

3D spectrum synthesis

Non-LTE 00000000000000 Conclusions 0000

3D atmosphere codes

STAGGER

R. Collet, A. M. Amarsi, M. Asplund, Z. Magic, Åke Nordlund, K. Galsgaard

Swedish Solar Telescope image (R $\approx 25\,{\rm km})$

 $\operatorname{STAGGER}$ numerical simulation

Image from https://staggergrid.wordpress.com/convection/

3D spectrum synthesis

Non-LTE

Conclusions 0000

3D atmosphere codes

Bifrost

B. V. Gudiksen, M. Carlsson, V. H. Hansteen, W.Hayek, J. Leenaarts, & J.

Martínez-Sykora

Image from da Silva Santos + (2018, A&A, 620, 124)

3D spectrum synthesis

Non-LTE 00000000000000 Conclusions 0000

3D atmosphere codes

MPS/University of Chicago Radiative MHD MuRAM

A. Vögler, J. H. M. J. Bruls, M. Schüssler, S. Shelyag, F. Cattaneo, T.

Emonet, & T. Linde

Image from Rempel (2014, ApJ, 789, 132)

0000000000	0000000	000000000000	0000
What is modallad?			

- Solution of the RHD or MHD equations coupled with radiative transfer
- Kinetics & transport for molecules and dust grains, non-equilibrium chemistry
- CO⁵BOLD not limited to local models: "box-in-a-star" \leftrightarrow "star-in-a-box"
- Result: realistic gas flow and energy transport from sub-photosphere to chromosphere
- Bifrost & MURaM: Models of the Chromosphere, extremely high resolution

3D model atmospheres 00000000●0 $\substack{\text{3D spectrum synthesis}\\00000000}$

Non-LTE

Conclusions 0000

Granulation across the Hertzsprung-Russell diagram

- \bullet From the Sun to stars with largely different parameters \rightarrow robustness
- Spatial scale ratio in figures: 2 × 10⁶
 → box not to scale!

3D spectrum synthesis 00000000

Non-LTE

Conclusions 0000

Multiple snapshots as single model atmosphere

Why use multiple snapshots?

Single snapshot represents small region of stellar disk

20 snaps typical selection

Ergodic approximation: **time** average \equiv **spatial** average

3D spectrum synthesis •0000000

Conclusions 0000

3D Spectrum synthesis

3D model atmospheres	3D spectrum synthesis	Non-LTE 000000000000	Conclusions
ITE spectral our	thesis in a nutch		

		المعاصف	
000000000	000000	000000000000	0000
3D model atmospheres		Non-LTE	Conclusions

	0000000		
3D model atmospheres		Non-LTE	Conclusions

3D spectral synthesis codes

- Linfor3D private Steffen + (2020, Manual)
 - 1D/3D model atmospheres
 - LTE
 - Departures can be read
- Optim3D private
 - Chiavassa + (2009)
 - 3D (local and global models)
 - Fast precomputed extinction coefficients
 - SED production
- SCATE private
 - $\mathsf{Hayek} + (2011)$
 - 3D models
 - LTE

Most are available upon request, subject to terms

	1.10		
	00000000		
3D model atmospheres		Non-LTE	Conclusions

3D Convective shifts

Intrinsic 3D velocities lead to convective shifts

3D non-LTE 1D LTE 3D LTE

Bergemann + (2019)

3D model atmospheres	3D spectrum synthesis	Non-LTE	Conclusions
000000000	000000000	000000000000	0000

lsotopes

The barium 4554 Å line as diagnostic of s- and r-process ratios.

HD 140283 - The metal-poor benchmark star - Stellar parameters

- $T_{\rm eff} = 5750 \, {\rm K}$
- $\log g = 3.7$
- [Fe/H] = -2.5

3D	model	atmospheres	
	00000		

3D spectrum synthesis 0000000●0

Non-LTE 00000000000000 Conclusions 0000

lsotopes

Lithium

- ⁶Li/⁷Li isotope ratios in metal-poor stars offer constraints on Lithium production in BBN and the early Universe.
- Traditional 1D LTE isotopic studies find an over-abundance of ⁶Li relative to model predictions.
- Issue one: symmetric adhoc broadening $(1D \rightarrow 3D)$
- Issue two: a limited treatment of line formation (LTE \rightarrow non-LTE)

Aoki + (2004) found that the broadening mechanism was of major importance to the isotope ratio.

3D model atmospheres

3D spectrum synthesis

Non-LTE

Conclusions 0000

Isotopes

Lithium isotopes modelled in 3D non-LTE...

New physics not enough to attribute all 6 Li in HD 123351 in Mott + (2017)

3D spectrum synthesis

Conclusions 0000

Non-LTE

000000000	00000000	000000000000	0000
ITE radiative tran	octor		

LTE can be characterised by the following:

- The Boltzmann excitation distribution $\frac{n_i}{N_I} = \frac{g_i}{U_I} e^{-E_i/kT}$
- The Saha ionisation distribution $\frac{N_I}{N_{I+1}} = n_e \frac{U_I}{U_{I+1}} \left(\frac{h^2}{2\pi m_e kT}\right)^{\frac{3}{2}} e^{\chi_I/kT}$
- The Maxwellian velocity distribution of particles $f(v) dv = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} 4\pi v^2 dv$

$$\mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = S_{\nu} - I_{\nu}$$

3D model atmospheres	3D spectrum synthesis	
		00000000000

Non-LTE radiative transfer

Radiation escapes from a star, so LTE must break down

Radiative rates of some transitions dominate over collisional rates

Conclusions

- Radiation no longer follows a Planckian distribution $\therefore S_{\nu} \neq B_{\nu}(T); S_{\nu} = j_{\nu}/\kappa_{\nu}$
- \bullet Collisional rates are proportional to particle density; low densities \rightarrow non-LTE
- Saha-Boltzmann distributions no longer determine level/excitation populations

Kinetic equilibrium / Rate equation
$$n_i \sum_{j \neq i}^{NL} (R_{ij} + C_{ij}) = \sum_{j \neq i}^{NL} n_j \left(R_{ji} + C_{ji} \right)$$

All transitions at every possible energy level included

3D spectrum synthesis

Non-LTE

Conclusions 0000

Non-LTE spectral synthesis in a nutshell

Non-LTE 00000000000000

Statistical equilibrium

Several codes on the market to compute these important calculations:

• MULTI - 1D S.E. code *public* Carlsson (1986)

Also computes basic 1D non-LTE spectrum synthesis

- **DETAIL** 1D S.E. code *private* Butler & Giddings (1985), Maskonkina + (2011)
- Multi3D 3D S.E. code *private* Leenaarts & Carlsson (2009) Also computes basic 3D non-LTE spectrum synthesis from atom
- **Balder** 3D S.E. code *private* Amarsi + (2016), Amarsi + (2018), Amarsi + (2019) Also computes *full* 3D spectrum synthesis

Most are available upon request subject to terms

3D spectrum synthesis

Non-LTE 0000000000000 Conclusions 0000

Statistical equilibrium

3D	model	atmospheres

Statistical equilibrium

What's being computed?

Formal solution solved using a Λ -operator:

- Mean intensity, J_{ν} , initial guess (usually populations are LTE or 0)
- Integrate formal transfer solution with enough rays so that J_{ν} can be approx. calculated
- § Compute J_{ν} at all locations of atmosphere, hence compute scattering emissivity, j_{ν}
- **③** Return to point (2) until J_{ν} appears to have been converged

In reality, convergence is usually set by user and governed by changes in population

3D model atmospheres	3D spectrum synthesis	Non-LTE	Conclusions
000000000	00000000	0000000000000	
The model atom Radiative data			

An ASCII table describing the behaviour of an atom

Only the atom modelled is considered in non-LTE. Everything else is LTE!

3D spectrum synthesis

Non-LTE 000000000000000 Conclusions 0000

The model atom

Radiative data

3D model atmospheres	3D spectrum synthesis	Non-LTE	Conclusions
0000000000	00000000	00000000000000	0000
The model atom Collisional data			

Collisional rates computed for a series of temperatures for all radiative b-b and b-f transitions (where possible)

Collisions with various particles:

$$\begin{tabular}{|c|c|c|c|} \hline A + H \end{tabular} A^Z + H \to A^{Z-1} + H^+ \end{tabular} A + e \end{tabular}$$

Hard to compute!

Drawins (1969) formula for hydrogenic collisional rates (order of magnitude estimate; requires extra empirically determined parameter, S_H) New ab initio quantum mechanical collisions for some atoms now becoming available for H (see Belyaev & Yakovleva 2018), e (see Barklem 2007)

ЗD	model	atmospheres	

3D spectrum synthesis

Non-LTE 0000000000000000 Conclusions 0000

Departure coefficients

Energy levels affected by effects of non-LTE differently

$$b_i = \frac{n_{i,\text{NLTE}}}{n_{i,\text{LTE}}}$$

 n_i – population of level i

Deeper layers of the star

3D spectrum synthesis

Non-LTE

Conclusions 0000

Departure coefficients

3D spectrum synthesis 00000000

Non-LTE 0000000000000 Conclusions 0000

3D non-LTE spectral synthesis in a nutshell

3D model atmospheres	3D spectrum synthesis	Non-LTE	Conclusions
000000000	00000000	000000000000	0000
Take away messag	es		

3D non-LTE is going through a renaissance...

- Massive efforts leading to a high production of new results
 - 81 refereed papers so far (abundances, methodologies, isotopes, temperatures)
 - 13 since 2019
- Abundance corrections available for a number of key elements (e.g. Li, C, Fe, Mn, Ba, Sr, etc.)
- Currently limited to atoms (molecules are too big)
- Atom only thing treated in non-LTE; everything else assumed to be in LTE

3D	model	atmospheres

Non-LTE 0000000000000

Take away messages

Massive undertaking

- Building a model atom
 - data collation
 - computing collisional rates
- Running a 1D non-LTE simulation
 - $\bullet\,$ Barium in the Sun took $\approx\,15\,\,seconds$
 - Strontium took \approx 30 seconds
 - $50 \le N_{\text{depth}} \le 150$
- Running a 3D non-LTE simulation
 - Barium in the Sun took \approx 15k hours!
 - Strontium took \approx 50k hours!
 - $3,100,000 \le \text{voxels} \le 25,000,000$

3D	model	atmospheres

3D spectrum synthesis

Non-LTE 00000000000000 Conclusions

Take away messages

Ways to speed up 3D non-LTE computations

- Simplifying the atom
 - Atom only thing treated in non-LTE
 - Levels carefully collapsed into super levels to reduce size
- Reducing number of horizontal grid points
 - $240^3 \rightarrow 30 \times 30 \times 240$ stagger grid
 - $140 \times 140 \times 150 \rightarrow 30 \times 30 \times 150 \text{ CO}^5\text{BOLD CIFIST grid}$
 - $280 \times 280 \times 300 \rightarrow 30 \times 30 \times 300 \text{ CO}^5\text{BOLD}$ hi-res
- 1.5D non-LTE departure coefficients
 - Departures computed for each vertical column in 1D
 - Columns combined to provide 1.5D departures
- Carefully chosen, 1D non-LTE can offer *some* compromise (see Bergemann + 2019)

3D	model	atmospheres

Useful links/books

Books:

- Theory of Stellar Atmospheres
 - Ivan Hubeny & Dimitri Mihalas
- The Observation and Analysis of Stellar Photospheres David F. Gray

Lecture series:

- Robert Rutten's *comprehensive* lecture series on radiative transfer
- C.P. Dullemond's lecture series of radiative transfer

Review papers:

- CO⁵BOLD paper Freytag + (2012)
- Solar abundances, Asplund + (2021)

Manuals:

- CO⁵BOLD user manual
- Linfor3D user manual