

Hybrid Nuclear Matter EOS with Color Superconducting Quark Phase: Bayesian Constraints from Observations

A. Ayriyan^{1,2}, D. Blaschke^{1,3,4}, J. P. Carlomagno^{5,6}, G. A. Contrera^{5,6}, and A. G. Grunfeld^{5,7}

- ¹ University of Wroclaw, Wroclaw, Poland
- ² A. Alikhanyan National Science Laboratory, Yerevan, Armenia ³ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- ⁴ Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- ⁵ CONICET, Buenos Aires, Argentina
- ⁶ IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata, Argentina
- ⁷ Comisión Nacional de Energía Atómica, Buenos Aires, Argentina

ARXIV:2501.00115 UNIVERSE 11, 141, 2025

2021/43/P/ST2/03319

GOAL

Perform a physics-informed Bayesian Analysis (BA) to test hybrid star EOS under modern astrophysical constraints.

HYBRID EOS

The hybrid EOS allowing a first-order phase transition from hadronic to two-flavor color-superconducting (2SC) quark matter, was constructed with a two-phase approach:

- The hadronic phase is represented by the DD2 densitydependent relativistic mean-field EOS.
- The quark matter phase is described by a nonlocal chiral quark model with 2SC phase.

NONLOCAL CHIRAL 2SC

The effective Euclidean action for quark matter is given by:

$$S_E = \int d^4x \left\{ \bar{\psi}(x) \left(-i\partial \!\!\!/ + \hat{m} - \gamma_0 \hat{\mu} \right) \psi(x) - \frac{G_S}{2} \left[j_S^f(x) j_S^f(x) \right] \right\}$$

+
$$\eta_D [j_D^a(x)]^{\dagger} j_D^a(x) - \eta_V j_V^{\mu}(x) j_V^{\mu}(x)]$$
 \}.

with scalar and diquark nonlocal currents:

$$j_S^f(x) = \int d^4z \, g_S(z) \, \bar{\psi}(x + \frac{z}{2}) \, \Gamma_f \, \psi(x - \frac{z}{2}),
 j_D^a(x) = \int d^4z \, g_D(z) \, \bar{\psi}_C(x + \frac{z}{2}) \, i\gamma_5 \tau_2 \lambda_a \, \psi(x - \frac{z}{2}),
 j_V^\mu(x) = \int d^4z \, g_V(z) \, \bar{\psi}(x + \frac{z}{2}) \, i\gamma^\mu \, \psi(x - \frac{z}{2}),$$

For the nonlocality a Gaussian ansatz is employed which after Fourier transformation to the momentum space reads (the vector current is taken local!):

$$g_i(\vec{p}) = \exp(-\vec{p}^2/\Lambda_i^2), i = S, D$$

quark matter **EOS** is parameterized dimensionless couplings ($G_S = 9.92 \text{ GeV}^{-2}$):

$$\eta_V = G_V/G_S$$
 and $\eta_D = G_D/G_S$

BA WITH MULTI-MESS. ASTRO.

A physics-informed Bayesian analysis is then performed to constrain (η_D, η_V) using observational data:

- NICER mass-radius measurements (e.g. PSR J0030+0451)
- Gravitational-wave tidal deformability from GW170817
- Precise pulsar mass measurements (e.g. PSR J0348+0432)
- Additionally: highest mass (PSR J0952-0607 "BW") and highly compact object (low mass-radius) (HESS J1731–347)

RESULTS

The Bayesian posterior favors:

- Low-to-moderate $\eta_V \lesssim 0.6 \rightarrow$ moderate stiffness
- High η_D ($\gtrsim 1.1$) \rightarrow early deconfinement at M $\approx 0.5-0.7$ M_{\odot}
- Hybrid stars are favored to have: maximum masses up to ≈
- 2.2 M_{\odot} and radii R \approx 12 km for M \approx 1.2–2.0 M_{\odot}
- Large η_V (stiff EOS) are disfavored due to failure to match tidal deformability constraints.
- Twin star configurations are allowed in a narrow region.
- New NICER M-R favors even less onset and low mass twins

CONCLUSION

This analysis **supports** the scenario of **early quark** deconfinement to 2SC matter in the cores of neutron stars, consistent with all current astrophysical constraints.

Figure 1: Pressure vs. Energy Density (left) and Tidal Deformability vs. Star Mass (right).

Figure 2: Bayesian Posterior in the (ηV , ηD) Plane (left) and Speed of Sound vs. Energy Density (right).

Figure 3: Phase Transition Classification. Color-coded regions in the $(\eta V, \eta D)$ plane show: no hybrid stars (grey and orange), stable hybrid stars (green and blue), blue color indicates twin stars. Overlaid with 60% and 90% credibility contours.

Figure 4: Maximum Mass Difference from Maximum Mass of Hadronic Star (left) and Tidal Deformability Λ for 1.4M \odot in (η V, η D) Plane (right).

We thank Dr. Oleksii Ivanytskyi for valuable discussions. This work was supported by NCN grant No. 2021/43/P/ST2/03319 (A.A. and D.B.). A.G.G., G.A.C., and J.P.C. acknowledge CONICET, ANPCyT and UNLP (Argentina) for financial support under grants No. PIP 2022-2024 GI-11220210100150CO, PICT19-00792, PICT22-03-00799499 and X960, respectively. D.B. acknowledges a travel grant awarded by MDPI Universe.

with the most selective

for PSR J0614-3329

grey dashed regions is newly