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Intensity Contrast Transfer Phase Retrieval
At KIT, the IPS and LAS institutes develop cutting-edge in situ, in vivo, operando, and high-throughput syn-
chrotron imaging techniques to characterize materials, biological systems, and the processes occurring within
them. Among these techniques, propagation-based phase-contrast X-ray imaging is particularly valuable due
to its simplicity and suitability for data-intensive 3D and even time-resolved 4D studies.

Under the assumptions of phase–attenuation duality, monochromatic radiation, and a sufficiently large Fres-
nel number, the measured intensity contrast can be converted into the object’s phase shift using the transport
of intensity equation (TIE) approach [Paganin 2002]. However, to enhance image contrast or to address ex-
perimental constraints, increasing the propagation distance may be necessary. This leads to smaller Fresnel
numbers, potentially violating the assumptions underlying TIE and resulting in blurred phase-retrieved 2D
images.

In such cases, the contrast transfer function (CTF) model [Guigay 1977]—which linearizes the object’s atten-
uation and phase shift—can be employed for phase reconstruction. This approach, however, assumes weak
attenuation, slowly varying phase shifts, and typically requires regularization [Huhn 2022]. Iterative tech-
niques [Hagemann 2018] offer another alternative and have shown success, but their computational demands
make them less suitable for real-time 3D reconstruction pipelines. More recently, deep learning methods
[Zhang 2021] have been explored, although they depend on the availability of suitable training data, which
may not always exist.

In our contribution, we will describe the Intensity Contrast Transfer (ICT) approach [Faragó 2024], a non-
iterative method for phase retrieval that is applicable to both small and large Fresnel numbers, as well as to
objects with higher attenuation. ICT can be used with both single- and multi-distance data. Its underlying
approximation generalizes those of the TIE and CTF models, converging to them when their respective as-
sumptions hold. When those assumptions are violated, ICT demonstrably outperforms both models, as we
will show through theoretical analysis and results on synthetic and experimental data.
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