
1

Continuous
Integration &
Delivery/
Deployment at
DESY FS-SC

2

Continuous Integration &
Delivery/Deployment at DESY FS-SC

User Centric Key Drivers:
 Software Quality:

 Functional attributes: Rich feature set addressing Use Cases, defect free.
 Non functional attributes: Stability/Reliability, high performance, efficiency in use of

system resources, usability.

 Agile Software Development
 Responsive/Adaptable to User needs, faster turnaround times, always working

software.
 Overcome Integration Hell of bulk code integration of Waterfall model.
 Overcome Dependency Hell with software packaging techniques.

 DAPHNE TA3
 Curated Repository of Data Analysis Software & Datasets based on FAIR principles

with Re-usability focus for Power Users and User community at large.
 Usability: Users simply run S/W – out of the box, and get their job done without

worrying about installation & configuration.
 High Quality Software = Widespread adoption / Large user base.

3

Continuous Integration &
Delivery/Deployment at DESY FS-SC
Risk factors for defects creeping during Integration (Integration Hell)
 Size of Code Changes: The larger the code change, the higher the chance of

introducing defects. Mistakes in merging, refactoring, logic, syntax, or
(requirements) implementation.

 Unfamiliarity with the Code: Misunderstand logic, miss dependencies, or introduce
inefficiencies (duplication).

 Depth of Code Changes: Changes deep into core logic, infrastructure, or low-level
dependencies, the risk is much higher.

 Code Complexity/Organization: Non modular, Unintended Side Effects.
 Dependencies & External APIs & Environment: Not pinning versions, bundling

issues.
 Developer Team Size: Merge conflicts, inconsistent coding styles, and integration

issues.
 Incomplete Testing: Insufficient test coverage.

 Coding Standards,Git Commit Guidelines, Peer review, Code Inspection with Static Code
Analysis tools and various levels of Testing improve Software Quality.

4

Continuous Integration &
Delivery/Deployment at DESY FS-SC
Risks in packaging & deployment (Dependency Hell)
 Source distribution puts unnecessary overhead of replication of build environment on

users.
 Version conflicts at OS package level (needed vs. installed).
 Version conflicts between at programming language package manager level (need vs.

installed).
 Elevated privileges requirement.

5

Continuous Integration &
Delivery/Deployment at DESY FS-SC
Practices supported by tools

 Continuous Integration: Frequent build, unit, integration, regression tests &
packaging of each small change/commits to detect defects early.

 Continuous Delivery: Frequent integrity checks, system tests, security scanning of
packages and publishing in repositories for manual deployment.

 Continuous Deployment: Frequent Automatic deployment of packages in
production from the repositories.

 Automation tools:
 Repetitive & reproduce-able CI/CD, provide fast feedback and free us to work on

non-repetitive tasks.
 Custom build rigid build script of the past is now very configurable.
 UI Dashboard to visibility and control of CI/CD process.

6

Continuous Integration &
Delivery/Deployment at DESY FS-SC

7

Continuous Integration &
Delivery/Deployment at DESY FS-SC

8

Continuous Integration &
Delivery/Deployment at DESY FS-SC

 Gitlab CI/CD activities

 Installation and Configuration of Windows and MacOS (15.3.1Sequoia) Runners.
 Updated CI/CD for :

 CrystFEL
 Container builds for Fedora, Ubuntu, AlmaLinux.
 Singularity/Apptainer container image using Kaniko.
 Homebrew recipe for MacOS.
 Continuous deployment on Maxwell.

 Nuclear Elastic X-ray scattering Universal Software (Nexus)
 Windows 11 and MacOS builds

 Many linux dynamically linked Python 3.6 – 3.12 container image.
 Pyinstaller executables using Many Linux containers.

 Plug2: A simple plotter for XPCS @P10
 RSAP: Reciporcal Space Maps Program

 For building FS-EC Tango debian packages.

9

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Pyinstaller the Python Packaging tool
 Generates a single, self extracting executable.
 Isolated /Insulated/Standalone/Sandboxed runtime environment.
 Bundle of Python program, language and system libraries and all resources.
 Supports different operating systems: Linux, Windows, Mac.
 Used Gitlab & Many Linux to build binaries on wide range of Linux.

10

Continuous Integration &
Delivery/Deployment at DESY FS-SC

11

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Core Concepts
 Pipeline: The entire CI/CD workflow executed on code changes. (.gitlab-ci.yml)
 Stage: Logical grouping of jobs (e.g., build, test, deploy).
 Job: A task executed in a pipeline stage.
 Runner: The machine that executes jobs.
 Artifact: Files (e.g., binaries, logs) saved after a job.
 Cache: Reusable dependencies to speed up pipelines.

12

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Keyword Purpose Example

stages Defines pipeline stages stages: [build, test, deploy]

jobs Defines tasks in a stage build_job:

before_script Prepares the environment before_script: [apt update]

script Runs job commands script: [make build]

after_script Executes cleanup tasks after_script: [rm -rf tmp]

artifacts Stores job output files artifacts: { paths: ["dist/*"] }

cache Reuses dependencies cache: { paths: ["node_modules/"] }

dependencies Controls which artifacts a job
downloads

dependencies: ["build"]

only / except Specifies when jobs run only: [main]

rules Controls when jobs run rules: - if: '$CI_COMMIT_BRANCH == "main"'

when Controls job execution when: manual

image Defines the Docker image image: python:3.9

services Adds additional containers services: [mysql:latest]

13

Continuous Integration, Delivery &
Deployment at DESY FS-SC

14

Continuous Integration, Delivery &
Deployment at DESY FS-SC

15

Continuous Integration, Delivery &
Deployment at DESY FS-SC

CrystFEL

 Open source C/C++ code base.
 Source distribution for various Linux flavours and MacOS (with also Homebrew Recipe)

Docker image, Apptainer “def file”.
 Cmake, Meson and Ninja build tools.
 Prerequisite External dependencies: Features set dependent on other libraries used at

build time.
 HDF5,HDF5 External plugin (Nexus format), GSL, FFTW, MSG Pack, ZMQ.
 Leverage a binary library platform specific distribution where available.
 Otherwise, build a library package from source.

 Build, unit test and install locally.

16

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Earlier CrystFEL Maxwell deployment approach
 Daily cron job (shell script - run-me) on a Maxwell node and an user account.
 One time install of build tools: Python, meson and ninja.
 Build & install steps in run-me script:

 Clean target directory /software/crystfel/devel
 Download and install cmake from binary distribution.
 Download other external dependencies source tarballs and build and install libraries

under /software/crystfel/devel. HDF5, HDF5 External plugin (Nexus format), GSL,
FFTW, MSG Pack, ZMQ.

 Clone CrystFEL source code from Gitlab master branch.
 Build CrystFEL and install locally at /software/crystfel/devel.

 Disadvantages:
 Scheduled daily build and install even when there is no change to CrystFEL code

base.
 Risk of broken installs.

17

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Revamped CrystFEL CI/CD
 Multiple stages with their jobs – Build, Test, Deploy, Build Container.
 Manual stage for building Dev Environment container images with all dependencies.
 Gitlab CI/CD pipeline triggers the builds on merge to master branch.
 All jobs run on different runners – Gitlab kubernetes cluster, MacOs.
 Maxwell build stage job now runs under AlmaLinux9 container in Gitlab kubernetes

cluster.
 Deployment stage job:

 Remotely copy (scp/rsync) the built software onto Maxwell target directory
/software/crystfel/devel.

 Authentication using ssh private key/public key pair or Kerberos.
 Run under CentOS container in Gitlab kubernetes cluster.

 Advantages:
 Installs only on change to source code base that build & undergo unit test

successfully.
 Complete visibility in Gitlab CI/CD pipeline & audit trail.
 Dev Env images have cut the build & deployment time from 25 mins to 8 mins.

18

Continuous Integration, Delivery &
Deployment at DESY FS-SC

19

Continuous Integration, Delivery &
Deployment at DESY FS-SC

20

Continuous Integration, Delivery &
Deployment at DESY FS-SC

21

Continuous Integration, Delivery &
Deployment at DESY FS-SC

22

Continuous Integration, Delivery &
Deployment at DESY FS-SC

23

Continuous Integration, Delivery &
Deployment at DESY FS-SC

24

Continuous Integration, Delivery &
Deployment at DESY FS-SC

25

Continuous Integration, Delivery &
Deployment at DESY FS-SC

26

Continuous Integration, Delivery &
Deployment at DESY FS-SC

27

Continuous Integration, Delivery &
Deployment at DESY FS-SC

28

Continuous Integration, Delivery &
Deployment at DESY FS-SC

29

Continuous Integration, Delivery &
Deployment at DESY FS-SC

30

Continuous Integration, Delivery &
Deployment at DESY FS-SC

31

Continuous Integration, Delivery &
Deployment at DESY FS-SC

32

Continuous Integration, Delivery &
Deployment at DESY FS-SC

33

Continuous Integration, Delivery &
Deployment at DESY FS-SC

34

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Observations/Conclusions

CI/CD tools like Gitlab:
 remove repetitive tasks, provides visibility & rapid feedback, speed up development.
 when used with static code analysis tools to improve code quality.
 allow comprehensive testing on multiple platforms & improve software robustness.

 Speed up of Gitlab CI/CD pipelines can be achieved by:

 building Dev container images for static dependencies.
 workflow & analysing job dependencies & caching.

 External runners required for MacOs, Windows and Linux for building special system
packages.

 There is no one size fits all approach to packaging, depending on development language
and runtime environments.

 Commit small, commit often & follow Git commit guidelins.

35

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Acknowlegements to Developers:

 Thomas White (FS-SC)
 Tim Schoof (FS-SC)
 Vijay Kartik (FS-SC)
 Abdullah Malik (CFEL)
 Lars Bocklage (FS)
 Marcus Fleck (FS-EC)

36

Continuous Integration, Delivery &
Deployment at DESY FS-SC

Thank You!

37

Continuous Integration, Delivery &
Deployment at DESY FS-SC

References
 Gitlab documentation:https://docs.gitlab.com/
 CI/CD Gitlab documentation: https://docs.gitlab.com/ee/ci/
 .gitlab-ci.yml keyword reference: https://docs.gitlab.com/ee/ci/yaml/
 YAML reference: https://yaml.org/
 Many Linux: https://github.com/pypa/manylinux
 PyInstaller: https://pyinstaller.org/en/stable/
 Continuous Integration: Book by Paul M. Duvall
 Continuous Delivery: Book by Jez Humble, David Farley
 Articles by Martin Fowler: https://martinfowler.com/
 CrystFEL: https://www.desy.de/~twhite/crystfel/
 NeXus: https://fs-mcp.pages.desy.de/nuclear-nexus/installation/installation.html

https://docs.gitlab.com/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/yaml/
https://yaml.org/
https://github.com/pypa/manylinux
https://pyinstaller.org/en/stable/
https://martinfowler.com/
https://www.desy.de/~twhite/crystfel/
https://fs-mcp.pages.desy.de/nuclear-nexus/installation/installation.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

