

Today you’ll see a lot about building and using containers

How you building the software that goes into containers is also important

This session covers:

Software packaging

Overview

Pitfalls to avoid

Solutions

'Traditional'/Centralised/HPC environment deployment

Overview

Spack

Pixi (Conda/Mamba)

Dependency hell is a colloquial term for the frustration of some software users who have installed software
packages which have dependencies on specific versions of other software packages.

Many dependencies

Long chains of dependencies

Version conflicts (explicit or not)

Circular dependencies

'Meta' dependencies (multiple package managers)

Historically a pain in the ass

Know your use case:

Application - can be completely isolated?

Library - installed alongside other packages?

Support requirements - concrete (python==3.13), range

(python>=3.10), wildcard (python==*)?

Targeting hosts?

Single - linux x86-64

Many - Linux, Windows, MacOS, etc…

Specific requirements - mpi , avx512 , etc…?

Keep control over your environment:

Self contained - avoid external/system dependencies

Use isolated environments

Keep concretized dependency lock files

Leverage CI/CD:

Build and test across supported environments/versions

Need system packages? Use matrix of os versions, e.g.

ubuntu:22 , ubuntu:lts

Supporting range of dependencies? Matrix of major

versions

Check for issues before users notice

Test on nightly/release candidates to get heads up

Automated PRs to trigger tests on upstream changes

Luckily we’re in ✨the future✨ and there are some solutions

` `

` ` ` `

` `

` ` ` `

` ` ` `

Python has (too) many packaging tools

Minimalistic:

setuptools - most basic packaging tool

Flit - minimalistic packaging, quick and simple

Hatch - newer project from PyPI, plugins, matrix support

Locking:

Poetry - very (most?) popular

Pipenv - builds on top of pip/virtualenv

PDM - standards based

Misc:

UV - 'drop-in' replacement for pip/venv, much faster

Rye/UV - multiple python version matrix

Conda/Pixi - external binary dependencies

Which to pick…? There’s no right answer

My personal opinion:

Strongly recommend one with support for lock files

Past that it doesn’t matter much

Poetry is good in general, others offer 'niche' features

Try poetry, if it doesn’t do what you need test others

1. Create a new project

2. Add a dependency

3. Dependency contains broad semver bounds by default

4. This will create an isolated venv for your project

5. Creates poetry.lock file - exact versions of all deps

6. Commit both files to repo

Developers poetry install

Installs isolated venv

With exactly what is in lock file

Users pip install ...

Uses versions from pyproject.toml

` `

` `

` `

` `

` `

$ poetry new cool-project

$ cd cool-project

$ ll

$ cat pyproject.toml

$ poetry add pydantic

$ cat pyproject.toml

$ cat poetry.lock

What if you have non-python dependencies?

Conda is a good option:

Large ecosystem, thousands of packages

Recommend using Mamba or Pixi instead (faster)

Not just python

Works for (pretty much) any package

Write a separate Conda 'recipe' file:

Contains all 'normal' (PyPI) dependencies

Can contain external dependencies

Can contain fancier OS/architecture build rules

Note that Conda packaging is typically 'independent':

Stored in separate 'feedstock' repository

context:
 name: extra-data
 version: 1.19.0

package:
 name: '{{ name|lower }}'
 version: '{{ version }}'

source:
 url: https://pypi.io/packages/source/{{ name[0] }}/{{ name }
 sha256: ee6aa3bae6b406d50765edb502bc37faf834b18a8145a6d4a10e

build:
 entry_points:
 - lsxfel = extra_data.lsxfel:main
 - karabo-bridge-serve-files = extra_data.cli.serve_files:m
 - karabo-bridge-serve-run = extra_data.cli.serve_run:main
 - extra-data-validate = extra_data.validation:main
 - extra-data-make-virtual-cxi = extra_data.cli.make_virtua
 - extra-data-locality = extra_data.locality:main
 noarch: python
 script: '{{ PYTHON }} -m pip install --no-deps --ignore-inst
 number: 1

requirements:
 host:
 - python >=3.9

pip

Spack is a package manager for supercomputers, […] you can build a software stack in Python or R, link to
libraries written in C, C++, or Fortran, and easily swap compilers or target specific microarchitectures

Conceptually similar to Conda, uses custom recipe files

Much more powerful

(Can be) much more complex

Excellent support for optimised builds

Focus on reproducible packaging/environments

Both compile-from-source and build cache

Over 8,000 packages in the Spack ecosystem

Used by many HPC centres

Packages (recipes) written as templates in Python

Specs (targets) support complex constraints

For the package itself

Or for its dependencies

Can be used to build environments

More on Spack in following section

Standard package managers assume:

Tight coupling between source code and target

Portable binaries/build artifacts

Massively simplifies packaging

Requires (relatively) generic builds

Bad for performance optimisation

Same toolchain across ecosystem

Same compiler

Same runtime libraries

Same language version

But in a HPC environment:

Often start from source code you need to compile

Optimized builds targeted to system architecture

Specific optimised toolchain/library present on OS

May need many variants of same package

e.g. mpich , openmpi , infiniband

Restrictions from system

e.g. ancient OS

Restrictions from packages

e.g. ancient Fortran package w/ extremely specific

dependencies

Most package managers make many assumptions which do not hold in HPC environments

` ` ` ` ` `

Important differences between HPC clusters and cloud/containerised usecases

HPC Cloud/Containerised Computing

Environment
Pre-configured/centrally managed, use of

environment modules (e.g. Lmod)

User-defined containerized environments

(Docker, Singularity)

Isolation Shared dependencies, managed via modules Strong isolation, dependencies bundled

Reproducibility &

Portability

Challenging due to system libraries, optimised

builds, limited portability

High reproducibility with consistent container

images, definition files, repos

Management &

Updates

(Mostly) admin managed updates; limited direct user

control

Direct control via CI/CD pipelines for rapid

iteration

Performance

Optimization

(Ideally) optimized for specific hardware, max

system integration (e.g., tuned MPI libraries)

Abstracted hardware details, typically generic

builds, may require tuning

Important differences between HPC clusters and cloud/containerised usecases

Containers are excellent for creating and distributing an already built software stack:

Typically done by using OS/3rd party package managers

Which provide generic unoptimised binaries

Difficult to integrate with system dependencies

Creating optimised container builds is as challenging as building all your software from scratch

This is completely unfeasible to do manually with basically any non-trivial environment

*Following slides stolen borrowed from:

ATPESC 2024 Software Track
Spack: Package Management for HPC

Todd Gamblin, Spack Project Lead
https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2024/08/ATPESC-2024-Track-3-

Talk-4-Gamblin-Spack.pdf

https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2024/08/ATPESC-2024-Track-3-Talk-4-Gamblin-Spack.pdf
https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2024/08/ATPESC-2024-Track-3-Talk-4-Gamblin-Spack.pdf

Extremely flexible recipes

spec syntax allows for arbitrarily constrained builds

Constraints are optional

Recursive - affects all related dependencies

e.g. build with +mpi enables MPI in all dependencies

Dependencies can be left abstract where unimportant

` `

` `

$ spack install mpileaks
unconstrained
$ spack install mpileaks@3.3
@ - custom version
$ spack install mpileaks@3.3 %gcc@4.7.3
% - custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads
+/- build option
$ spack install mpileaks@3.3 cppflags="-O3 -g3"
compiler flags
$ spack install mpileaks@3.3 target=zen2
target (micro)architecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3
^ dependency information

Pixi is a package management tool for developers. It allows the developer to install libraries and
applications in a reproducible way. Use pixi cross-platform, on Windows, Mac and Linux.

Descendent of projects like Mamba/Boa which aimed to

improve Conda performance

Main features:

Extremely fast

Locking

Packable/relocatable

Think of it as Conda + locking + matrix envs

$ pixi init # create new workspace
$ pixi add ... # add dep to project
$ pixi install # install all deps
$ pixi shell # spawn shell in env

Poetry

Spack

Pixi

ATPESC 2024 - Spack

Flit

Hatch

Pipenv

PDM

Rye

https://python-poetry.org/
https://spack.io/
https://pixi.sh/
https://flit.pypa.io/en/stable/index.html
https://hatch.pypa.io/latest/
https://pipenv.pypa.io/en/latest/
https://pdm-project.org/en/latest/
https://rye.astral.sh/

