Software Packaging and Environment Management
In the context of RSE/HPC

Introduction

o Today you'll see a lot about building and using containers
o How you building the software that goes into containers is also important
o T_hlz session covers:
o Software packaging
o Overview
o Pitfalls to avoid
o Solutions
o 'Traditional'/Centralised/HPC environment deployment
o Overview
o Spack
o Pixi (Conda/Mamba)

Software Packaging

Everything you don’t want to know, but should

Dependency Hell

Historically a pain in the ass

Dependency hell is a colloquial term for the frustration of some software users who have installed software
packages which have dependencies on specific versions of other software packages.

o Many dependencies

o Long chains of dependencies

o Version conflicts (explicit or not)
o Circular dependencies

o 'Meta’ dependencies (multiple package managers)

Eﬁﬁr’_.]NS-TﬁLD «7— iP\"I’HOHF‘HTH

‘ﬁ\ /“m >

(PNOTHER PIP??)

4

(????—rmm—:uav (¢
.-’usr}lncu.h’(je]ln\
l j f fusrnocnlfl:bfp;rhmia

lusrllocal/opt ~—— /usr/local/lib/ puthon2
/(A BUNCH OF PATHS WITH “FRAMEWORKS' IN THEM SOMEWHERE)/

MY PYTHON ENVIRONMENT HAS BECOME S0 DEGRADED
THAT My LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Escaping Hell

Luckily we're in . the future .~ and there are some solutions

Know your use case: Leverage CI/CD:
o Application - can be completely isolated? o Build and test across supported environments/versions
o Library - installed alongside other packages? o Need system packages? Use matrix of os versions, e.g.
o Support requirements - concrete (‘python==3.13"), range ‘ubuntu:22° , “ubuntu:lts’
("python>=3.10"), wildcard ("python==*")? o Supporting range of dependencies? Matrix of major
o Targeting hosts? versions
o Single- "linux x86-64" o Check for issues before users notice
o Many - Linux, Windows, MacQOS, etc... o Test on nightly/release candidates to get heads up
o Specific requirements - ‘mpi- , "avx512 ,etc..? o Automated PRs to trigger tests on upstream changes

Keep control over your environment:
o Self contained - avoid external/system dependencies

o Use isolated environments

o Keep concretized dependency lock files

Python

Python has (too) many packaging tools

o Minimalistic:
o setuptools - most basic packaging tool
o Flit - minimalistic packaging, quick and simple

o Hatch - newer project from PyPlI, plugins, matrix support

o Locking:
o Poetry - very (most?) popular
o Pipenv - builds on top of pip/virtualenv
o PDM - standards based

o Misc:
o UV -'drop-in' replacement for pip/venv, much faster
o Rye/UV - multiple python version matrix

o Conda/Pixi - external binary dependencies

Which to pick...? There’s no right answer

My personal opinion:
o Strongly recommend one with support for lock files

o Past that it doesn’t matter much
o Poetry is good in general, others offer 'niche' features

o Try poetry, if it doesn’t do what you need test others

Python - Poetry

—

o g A~ 0D

. Create a new project

Add a dependency

Dependency contains broad semver bounds by default
This will create an isolated “venv ' for your project
Creates “poetry.lock file - exact versions of all deps

Commit both files to repo

Developers “poetry install®
o Installs isolated venv

o With exactly what is in lock file
Users “pip install ...

o Uses versions from “pyproject.toml®

poetry new cool-project

cd cool-project

11

cat pyproject.toml

poetry add pydantic

cat pyproject.toml

cat poetry. lock

General - Conda

What if you have non-python dependencies?

Conda is a good option:
o Large ecosystem, thousands of packages

o Recommend using Mamba or Pixi instead (faster)
o Not just python
o Works for (pretty much) any package

Write a separate Conda 'recipe’ file:
o Contains all 'normal’' (PyPl) dependencies

o (Can contain external dependencies

o Can contain fancier OS/architecture build rules

Note that Conda packaging is typically independent

o Stored in separate 'feedstock’ repository

context:

name: extra-data

version: 1.19.0

package:
name: '{{ name|lower }}
version: '{{ version }}

source:
url: https://pypi.io/packages/source/{{ name[0] }}/{{ name
sha256: ee6aa3bae6b406d50765edb502bc37faf834b18a8145a6d4al10

build:

entry_points:

lsxfel = extra_data.lsxfel:main
karabo-bridge-serve-files = extra_data.cli.serve_files:r
karabo-bridge-serve-run = extra_data.cli.serve_run:main
extra-data-validate = extra_data.validation:main
extra-data-make-virtual-cxi = extra_data.cli.make_virtu
extra-data-locality = extra_data.locality:main

noarch: python
script: "{{ PYTHON }} -m pip install --no-deps --ignore-insi
number: 1

requirements:
host:

python >=3.9

General - Spack

Spack is a package manager for supercomputers, [...] you can build a software stack in Python or R, link to
libraries written in C, C++, or Fortran, and easily swap compilers or target specific microarchitectures

o Conceptually similar to Conda, uses custom recipe files o Packages (recipes) written as templates in Python
o Much more powerful o Specs (targets) support complex constraints

o (Can be) much more complex o For the package itself

o Excellent support for optimised builds o Or for its dependencies

o Focus on reproducible packaging/environments o Can be used to build environments

o Both compile-from-source and build cache

o More on Spack in following section
o Over 8,000 packages in the Spack ecosystem

o Used by many HPC centres

HPC Software and Environment Management

Challenges

Most package managers make many assumptions which do not hold in HPC environments

Standard package managers assume:
o Tight coupling between source code and target

o Portable binaries/build artifacts
o Massively simplifies packaging
o Requires (relatively) generic builds
o Bad for performance optimisation
o Same toolchain across ecosystem
o Same compiler
o Same runtime libraries

o Same language version

But in a HPC environment:

o

o

(o]

Often start from source code you need to compile
Optimized builds targeted to system architecture
Specific optimised toolchain/library present on OS
May need many variants of same package

o e.g. mpich , ‘openmpi’ , ‘infiniband’
Restrictions from system

o e.g.ancient OS

Restrictions from packages

o e.g. ancient Fortran package w/ extremely specific

dependencies

What About Containers?

Important differences between HPC clusters and cloud/containerised usecases

Environment

Isolation

Reproducibility &
Portability

Management &
Updates

Performance
Optimization

HPC

Pre-configured/centrally managed, use of
environment modules (e.g. Lmod)

Shared dependencies, managed via modules

Challenging due to system libraries, optimised
builds, limited portability

(Mostly) admin managed updates; limited direct user
control

(Ideally) optimized for specific hardware, max
system integration (e.g., tuned MPI libraries)

Cloud/Containerised Computing

User-defined containerized environments
(Docker, Singularity)

Strong isolation, dependencies bundled

High reproducibility with consistent container
images, definition files, repos

Direct control via CI/CD pipelines for rapid
iteration

Abstracted hardware details, typically generic
builds, may require tuning

What About Containers?

Important differences between HPC clusters and cloud/containerised usecases

Containers are excellent for creating and distributing an already built software stack:
o Typically done by using OS/3rd party package managers
o Which provide generic unoptimised binaries

o Difficult to integrate with system dependencies

o Creating optimised container builds is as challenging as building all your software from scratch

o This is completely unfeasible to do manually with basically any non-trivial environment

*Following slides stelen borrowed from:

ATPESC 2024 Software Track
Spack: Package Management for HPC
Todd Gamblin, Spack Project Lead

https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2024/08/ATPESC-2024-Track-3-Talk-4-Gamblin-Spack.pdf
https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2024/08/ATPESC-2024-Track-3-Talk-4-Gamblin-Spack.pdf

Modern scientific codes rely on icebergs of dependency libraries

MFEM:

31 packages,
69 dependencies

ANT=EN

71 packages
188 dependencies

LBANN: Neural Nets for HPC

AJ

r-condop:
R Genome Data Analysis Tools

= ' L
T SN\
i ~

&

ECP’s EA4S stack is even larger than these codes

LT = . == om0 = = == -
o = o) = mmEm miow = me ™ m e e sen ==
|t = = e Bl e R - == a--'u = e = = =
o — = rmm——— o = y - ey
- rr—) — |11 ey it o — — [L —
— B — o = - — o . — P
- e e = B -l = m——e - || el i
e o o i o e - e P e e — o ey g e
| o e e e [P g i1 i i = - o
- == — — . W e] rusoe e at - s bt
W=y e e E v : — e
st - i e i i .| st p
e [e an = - e
- e o (e
= v iy
= = i) o N e
= e === = =
e e = = =
=3 sy =
ik~

— Red boxes are the packages in it (about 100)

— Blue boxes are what else you need to build it (about 600)
— It’s infeasible to build and integrate all of this manually

LLNL-PRES-806064

spack.io @ -

Some history:
How to install software on a supercomputer, circa 2013

1. Download all 16
tarballs you
need

anbtguoo

TTe31SUT o3eu

2. Start building!

oyew

Ia7Tdwoo y3TM 3ybTa

InbrtIuoco
TTe3SUT o3)euw o2)yew oFeud

anbtyuoo

ITe3sSUuT =yeu

oyeu

oyeu

3. Run code
4. Segfault!?
5. Start

over...
LLNL-PRES 806064 SpaCK' 10

Spack

o Extremely flexible recipes
o “spec’ syntax allows for arbitrarily constrained builds
o Constraints are optional
o Recursive - affects all related dependencies
o e.g.buildwith “+mpi" enables MPI in all dependencies

o Dependencies can be left abstract where unimportant

spack

spack

spack

spack

spack

spack

spack

install

install

install

install

install

install

install

mpileaks

mpileaks@3.

mpileaks@3.

mpileaks@3.

mpileaks@3.

mpileaks@3.

mpileaks@3.

%gcc@4.7.3

%gcc@4.7.3 +threads

cppflags="-03 -g3

target=zen2

Ampich@3.2 %gcc@4.9.3

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks Acallpath@1.0+debug Mibelf @0.8.11 User input: abstract spec with some constraints
spec.yaml
= mpileaks m “e%"sj""- 4 . ..:'::'::I;nijx-xau_u
o o ppies compler:
3
E ' ;k;.xrllphzac!uzlwc,lkmrh\-hnptpd
ﬁ. a1 @ 1 '|_ th 1.8 nu:a::;li:::ﬁ::n:;:‘i:fﬂw:;:;?wn
(] Cﬂllg:gns .2 ¥gr.cr.a5::<:l4p.u7 3-;dlebug A ":l?!lhlIhn?nﬂuvzn:-uhsws?sdwululh
=linux-ppcbd -'-;'-i.c.
" ‘r’ \ -_,I -
moi dyninst Concretize Toceaa7 s | | Moccea 7.’ Store
=linux-ppcbd =Linux-ppcbd teeshvTehpedkssplimadkazaTanowln
andartdf]23yjgmdabeskpejc 7213
nash: kszrtkpbracizs 2o keorlaybnpipd
libdwarf “bé%f: 620130729 s os
=l 1nux-ppco4 J—
sivTehpeJksznlim3dka3aTanowig
wariaris:
libelfad &, 11 1'&%2‘_1.(2;3!_;!_{1 on: 1380
=linux-ppcb4
Abstract, normalized spec Concrete spec is fully constrained Detailed provenance stored
with some dependencies and can be passed to install with installed package

spack.io @

LLNL-PRES-B0G0G4

Spack environments enable users to build customized stacks

from an abstract description

Simple spack.yaml file

spack:
include external configuration
include:
- «./special-config-directory/
- .fconfig-file.yaml

add package specs to the “specs’ list
specs:

- hdfs

- libelf

- openmpl

Concrete spack.lock file (generated)

{
“concrete_specs": {
"6s63s02kstp3zyviezglndmavyél3nul”: {
"hdfs*: {
"version®: "1.10.5",
"arch": {
"platform™: "darwin",
"platform_os": "mojave",
“target™: "xBé6_64"
]l
“compiler”: {
"name": "clang",
"version": "10.8.0-apple"

]I
“namespace"” :
“paramete

"buil

spack.yaml file with
names of required
dependencies

Dependency

packages

Lockfile describes
exact versions installed

N

= spack.yaml describes project requirements

were installed, allows them to be reproduced.

Spack packages.

build
project

spack.lock describes exactly what versions/configurations

Can also be used to maintain configuration together with

— E.g., versioning your own local software stack with consistent
compilers/MPI implementations
— Allows developers and site support engineers to easily version
Spack configurations in a repository

spack.io @

Environments have enabled us to add build many features
to support developer workflows

def ire_spec_detrilsicis, sneflx, eoes_inpreficd;
ee_te_geth = cicti
=i path. basmnane (s, pl for o in emee i prefis

spack external find P ————

Automatically find and cenfigure external packages on the system :."......_”" T
'.-n..:u' set in ewe_to_pati: Tl WA e

sl
waske = ppack. vt ll. emecutsbile. Evecaisblel sne_to_peth] omese ') o
on's awimmEsird

'ttt cume_sent:futa_ e
packages: P i —
oniput = crakel'—-vers o Ll B
LF kgt cmake; : =

watch = ro.smarchir’ cwohe. seerazeras (U, output) externals: [—

1 natcha = spect CuakediE.15.1 L
wersion str = natch.groed LI prefiz: fusrilocal [r———
FEDarT Speel onaneg(e] . Foread{versioe_stri |

spack test —

-

package.py spack.yaml configuration Packages know how to run their own test suites g RN

B s T e —
B

package.py

spack ci

Automatically generate parallel build pipelines
(more on this |ater)

.gitlab-ciyml Cl pipeline spack containerize

Tum environments into container build recipes
spack.yam|

LLNL-PRES-B0G0G4

Pixi
Pixi is a package management tool for developers. It allows the developer to install libraries and
applications in a reproducible way. Use pixi cross-platform, on Windows, Mac and Linux.

o Descendent of projects like Mamba/Boa which aimed to

improve Conda performance

Main features:

o Extremely fast
y o Think of it as Conda + locking + matrix envs
o Locking

o Packable/relocatable

$ pixi init

$ pixi add ...
$ pixi install
$ pixi shell

References

(o]
-
o
@
o
<

o
w»
o]
S <)
(@)
-~

o
Y
=

(o]
>
_|
Y
m
n
O
N
o
N
N
92
o]
)
Q
QL

https://python-poetry.org/
https://spack.io/
https://pixi.sh/
https://flit.pypa.io/en/stable/index.html
https://hatch.pypa.io/latest/
https://pipenv.pypa.io/en/latest/
https://pdm-project.org/en/latest/
https://rye.astral.sh/

Questions?

