
Introduction to good DevOps

practice

Matheus do Carmo Teodoro @EuXFEL

matheus.teodoro@xfel.eu

A Noob-Friendly Guide to DevOps for Scientific Software

Page 2

Outlook

Introduction to good DevOps practice | Matheus C. Teodoro

 Introduction to DevOps for Scientific Software

 Git & Collaborative Development

 Introduction to CI/CD (Continuous Integration & Deployment)

 Versioning & Deployment

 Final Takeaways and Q&A

Page 3Introduction to good DevOps practice | Matheus C. Teodoro

 Introduction to DevOps for Scientific Software

 Git & Collaborative Development

 Introduction to CI/CD (Continuous Integration & Deployment)

 Versioning & Deployment

 Final Takeaways and Q&A

Page 4

Automatic testing

Automatic deployment

Reliable and reproducible

software

“DevOps combines development (Dev) and
operations (Ops) to increase the efficiency, speed,

and security of software development and
delivery compared to traditional processes”

Introduction to DevOps for Scientific Software
What’s DevOps and why does it matter?

Introduction to good DevOps practice | Matheus C. Teodoro

Dev Ops+ With DevOps

Although effort and time is needed to setup a DevOps

good pipeline, it saves one greater effort and time waste

later on

Bugs appear too late and it

takes long to deploy the

fixed version

Complicated and hard to

track development

Hard to maintain software

Without DevOps

Page 5

In this new scenario

DevOps is needed since it

provides:

- Collaborative

development

- Automatic testing and

deployment

- Catching problems

early on

- Build reusable and

reliable software

Introduction to DevOps for Scientific Software
What’s DevOps and why does it matter FOR SCIENCE?

Introduction to good DevOps practice | Matheus C. Teodoro

Typical starting place of a scientific

software developer

Only I use my

code
I code alone

I test my code

by running it

I’m only

interested in

the results

The new context that developer might

face

Many people

will use the

software

Many people

will develop

the software

Performance,

security and

scalability

matter now

Bugs might

have

catastrophic

consquences

How to adapt

Page 6

Introduction to DevOps for Scientific Software
Core principles

Introduction to good DevOps practice | Matheus C. Teodoro

Multiple contributors and large projects will require

good planning and organisation. GitHub/GitLab will

provide a organised way of development, version

control, PRs and code reviews.

Collaborative development

Time and performance is of the essence. A good

CI pipeline will remove the need of manual testing

while CD will deliver the application updates fast to

users. GitHub/GitLab also provides means to build

CI/CD pipelines.

Automation and Continuous integration

Scientific software often requires results to be

reproducible. Versioning the software will ensure

that the software releases are trackable.

Versioning and Reproducibility

Delivering the software to the end user must be

fast and (semi)automatic.

Deployment

Page 7Introduction to good DevOps practice | Matheus C. Teodoro

 Introduction to DevOps for Scientific Software

 Git & Collaborative Development

 Introduction to CI/CD (Continuous Integration & Deployment)

 Versioning & Deployment

 Final Takeaways and Q&A

Page 8

 Git & Collaborative Development
Large projects with multiple contributors require organisation, planning, and control.

Introduction to good DevOps practice | Matheus C. Teodoro

DevOps solution: GitHub/GitLab will provide tools for:

❑ Commit, commit, commit! Yes, time travel is a thing with git.

❑ Push Requests (PR) and Code reviews! Now you can get formally roosted by your colleagues and increase the

quality of the application.

❑ Branching and merging strategies! Feeling uncertain? Worry not! You will use a branch you can break at first.

Example: ”Users want a dark mode in the DAMNIT application. I branch the repo, implement the feature, make a PR and, after review I can merge it. The

users are now happy”

Collaborative development

Page 9

❑ Commit often but keep it meaningful

❑ Follow conventions and write clear commits: ”fix: dark mode

contrast issue #42” is better than “Oops, my bad.”

❑ Use feature branches oringin/main must be kept clean

❑ Follow name convention stuff526 is a bad name

❑ Consider squashing before the final merge

 Git & Collaborative Development
Best practices when developing with git, it’s all about good communication

Introduction to good DevOps practice | Matheus C. Teodoro

❑ Versioning control

❑ Branching and merging strategies

(stable)main

feature/dark-mode

commits

PR

CI

Merge back to main

❑ Abuse of markdown, figures and gifs

❑ Tell your reviewer how to test your feature

❑ Point out possible problems

❑ PRs and Code reviews!

Page 10

❑ Commit often but keep it meaningful

❑ Follow conventions and write clear commits: ”fix: dark mode

contrast issue #42” is better than “Oops, my bad.”

❑ Use feature branches oringin/main must be kept clean

❑ Follow name convention stuff526 is a bad name

❑ Consider squashing before the final merge

 Git & Collaborative Development
Best practices when developing with git, it’s all about good communication

Introduction to good DevOps practice | Matheus C. Teodoro

❑ Versioning control

❑ Branching and merging strategies

❑ Abuse of markdown, figures and gifs

❑ Tell your reviewer how to test your feature

❑ Point out possible problems

❑ PRs and Code reviews!

Page 11Introduction to good DevOps practice | Matheus C. Teodoro

 Introduction to DevOps for Scientific Software

 Git & Collaborative Development

 Introduction to CI/CD (Continuous Integration & Deployment)

 Versioning & Deployment

 Final Takeaways and Q&A

Page 12

 Introduction to CI/CD
Manual testing is slow and error-prone. Automation ensures faster and reliable software delivery

Introduction to good DevOps practice | Matheus C. Teodoro

DevOps will save you from deployment hell:

❑ Continuous Integration! Writing tests is a necessary pain. Now every push will automatically test your code, so

you can go home and sleep peacefully after work

❑ Continuous Deployment/Delivery: Passed the test? Approved PR? Is it a new release? Congrats, now

deployment will be (semi)automatically done.

Example: ”Dark mode feature is developed and approved! Now we need to assure that the feature won’t break the application and , likewise, that further

changes on the application won’t break the feature. The new version of the application needs to be ready for release, users are eager to use it!”

Introduction to CI/CD

Page 13

 Introduction to CI/CD
Manual testing is slow and error-prone. Automation ensures faster and reliable software delivery

Introduction to good DevOps practice | Matheus C. Teodoro

How does it work?

❑ To set up your CI/CD pipeline all you need (apart from your code, your tests, your Dockerfile…) is a YAML (Yet

Another Markup Language) file that looks like this:

Introduction to CI/CD

Page 14

 Introduction to CI/CD
Manual testing is slow and error-prone. Automation ensures faster, more reliable software delivery

Introduction to good DevOps practice | Matheus C. Teodoro

Workflow

Developer pushes code

CI pipeline starts

Tests run automatically

 tests fail

You fix your code

and push it again

 tests passes

Was it pushed to main?

Check tags and releases Deployment to staging

Deploy!

Page 15

 Introduction to CI/CD
Manual testing is slow and error-prone. Automation ensures faster, more reliable software delivery

Introduction to good DevOps practice | Matheus C. Teodoro

Best practices when building your tests

❑ Keep them fast and isolated

❑ Don’t try to test every single thing

❑ Use mocking if your application needs a DB or APIs

❑ Write good unit tests

❑ Keep in mind that these are slow, so run they after the unit tests

❑ Docker can be useful to make temporary environments (e.g. your code uses a Kafka broker)

❑ Do you need integration tests?

Page 16

 Introduction to CI/CD
Minimal example of a YAML setup for GitHub

Introduction to good DevOps practice | Matheus C. Teodoro

Continuous integration

Workflow will be triggered on “push”

Defines the env where the jobs will run (here the latest ubuntu)

GitHub action: clone the current repository version into the VM

GitHub action: Install python environment on the runner

Install dependencies from requirements.txt

Run your unit tests

Page 17Introduction to good DevOps practice | Matheus C. Teodoro

 Introduction to DevOps for Scientific Software

 Git & Collaborative Development

 Introduction to CI/CD (Continuous Integration & Deployment)

 Versioning & Deployment

 Final Takeaways and Q&A

Page 18

 Versioning and deployment
Publishing your package

Introduction to good DevOps practice | Matheus C. Teodoro

Example: DAMNIT

Workflow will be triggered on push into master and if the

commit has a tag. Tags are set manually to indicate that this
version should be published

Creates source (.tar.gz) and wheel (.whl) distributions

Uses PyPI trusted publishing (no need to store API tokens in

secrets).

Package is ready to use

Page 19

 Versioning and deployment
Pushing a docker image

Introduction to good DevOps practice | Matheus C. Teodoro

Example: EUXFEL environments

Workflow will be triggered on changes are pushed into ‘custom-

recipes/Dockerfile’, at the main branch

REGISTRY is set to GitHub Container Registry (GHCR)

Checkout the repository

Logs in to GitHub Container Registry (GHCR)

Builds docker image, includes extracted metadata and push it to

GHCR

Page 20

 Versioning and deployment
General remarks

Introduction to good DevOps practice | Matheus C. Teodoro

❑ Manual Job Triggers: For long duration jobs that might be optional

Optimize your workflow!

❑ Use caching: This way you can have

faster builds

❑ Treat your versioning with care <3❑ Use dependabot: that way you can keep your

dependencies up to date

Page 21Introduction to good DevOps practice | Matheus C. Teodoro

 Introduction to DevOps for Scientific Software

 Git & Collaborative Development

 Introduction to CI/CD (Continuous Integration & Deployment)

 Versioning & Deployment

 Final Takeaways and Q&A

Page 22

 Final remarks

Introduction to good DevOps practice | Matheus C. Teodoro

What we’ve learned today? What’s next?

Why DevOps?

Setting a DevOps good pipeline will save you

greater effort and time waste later on. Also will

make your product more scalable and

reproduceble.

How to CI

Write good tests and automatize them with a CI

pipeline, this way your software will be less prone

to error.

How to CD

Weather if you are publishing a package in PyPI or

pushing a docker image, automatize the process of

deployment or delivery so your work can reach the

users faster.

Collaborate with git

Give your colleagues a robust way to collaborate if

you writing good commits and PRs. Also give

yourself the ability of travel to past commits and

the freedom of branching for a smooth dev setup!

What’s next?

We’ve talked a lot about how to automatize

deployment, but how does deployment work?

Later in this workshop you will learn about:

• Package and framework deployment at European XFEL

• Continuous integration and deployment at DESY FS-SC

• Introduction to containers

• Deployment and containerisation of infrastructure components at

HZB

• DECTRIS container services

• CI-, containerisation and virtualisation workflows

• Kubernetes applied to an image processing service

Page 23

 Acknowledgments and Q&A

Introduction to good DevOps practice | Matheus C. Teodoro

Questions?

• Cammille Carinan

• Robert Rosca

• Fabio Dall’Antonia

• Luca Gelisio

• Lisa Amelung

Powered by teamwork – Thanks, Everyone!

@EuXFEL

@EuXFEL

@EuXFEL

@EuXFEL

@ DESY

	Slide 1: Introduction to good DevOps practice
	Slide 2: Outlook
	Slide 3
	Slide 4: Introduction to DevOps for Scientific Software
	Slide 5: Introduction to DevOps for Scientific Software
	Slide 6: Introduction to DevOps for Scientific Software
	Slide 7
	Slide 8: 🐣 Git & Collaborative Development
	Slide 9: 🐣 Git & Collaborative Development
	Slide 10: 🐣 Git & Collaborative Development
	Slide 11
	Slide 12: ⚙️ Introduction to CI/CD
	Slide 13: ⚙️ Introduction to CI/CD
	Slide 14: ⚙️ Introduction to CI/CD
	Slide 15: ⚙️ Introduction to CI/CD
	Slide 16: ⚙️ Introduction to CI/CD
	Slide 17
	Slide 18: ☁️ Versioning and deployment
	Slide 19: ☁️ Versioning and deployment
	Slide 20: ☁️ Versioning and deployment
	Slide 21
	Slide 22: 👀 Final remarks
	Slide 23: 👀 Acknowledgments and Q&A

