

Contribution ID: 9 Contribution code: K-2

Type: **Keynote**

The SpiNNaker2 neuromorphic system for large-scale brain simulation and energy-efficient Al

Tuesday 17 June 2025 15:30 (45 minutes)

TU Dresden has recently completed the construction of the world's largest brain-inspired supercomputer "SpiNNcloud", which will allow the real-time simulation of up to 5 billion neurons. It is based on the neuromorphic "SpiNNaker2" chip featuring 152 low-power ARM cores and digital accelerators to speed up the processing of spiking and deep neural networks. The overall system comprises a scalable communication infrastructure enabling the low-latency multi-cast routing of event packets such as spikes. All of this makes SpiNNaker2 a unique platform to explore large-scale brain simulation and neuro-inspired AI algorithms. This talk will introduce the SpiNNaker2 chip and system architecture and explain how spiking neural networks are simulated in real-time. Further, we will show examples of using SpiNNaker2 for efficient event-based AI processing. Finally, we will provide an overview of the software stack (including efforts on supporting NESTML) and give an outlook on the access options for SpiNNaker2.

Acknowledgements

This work is partly supported by the following projects: EBRAINS 2.0, ESCADE, ScaDS.AI. We'd like to thank all people involved in the SpiNNaker2 hardware and software development from TU Dresden, University of Manchester, and SpiNNcloud Systems.

References

Preferred form of presentation

Talk (& optional poster)

Topic area

Simulator technology and performance

Keywords

SpiNNaker2, Neuromorphic Hardware, Brain Simulation, Spiking Neural Networks

Speaker time zone

UTC+2

I agree to the copyright and license terms

I agree to the declaration of honor

Yes

Primary author: VOGGINGER, Bernhard (TU Dresden)

Presenter: VOGGINGER, Bernhard (TU Dresden)

Session Classification: Keynote