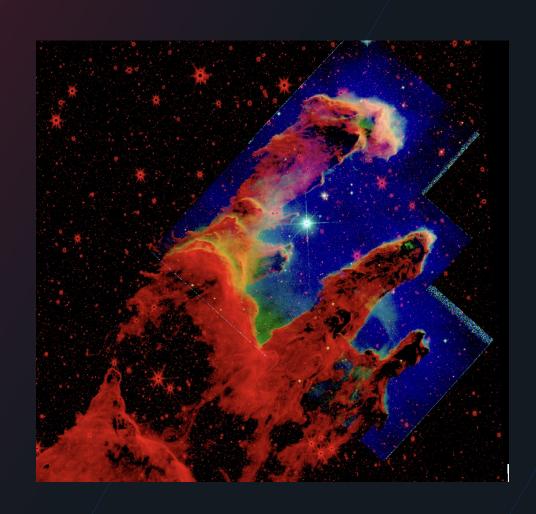
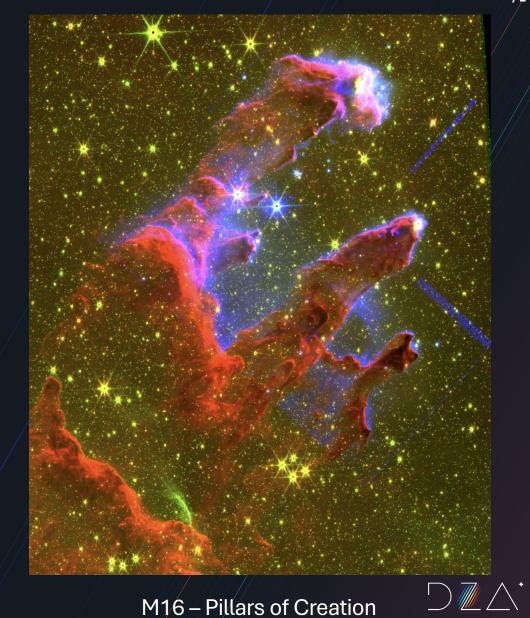
# Universe Through Archival Data

**Understanding and Creating Astronomical Images** 


Pavlo Plotko


2nd ChETEC-INFRA Observational School (ChINOS) 2025 21.07.2025 pavlo.plotko@dzastro.de plotkopavlo.com

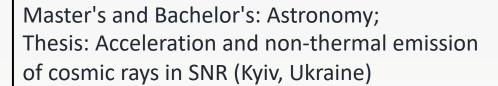


# The goal: create an image of M16

Lean about archives and images






### Who am I?

Building and coordinating of all activities with Eastern Europe/Baltic at DZA research ("part-time")





PhD: theoretical astrophysics; UHECRs; (DESY Germany)



Before that: Photometric studies of asteroids, stars, and GRB afterglow (Kharkiv, Ukraine)





Organizing:
Astronomy Tournaments
Astrophysics Olympiads
Astrophysics Conferences



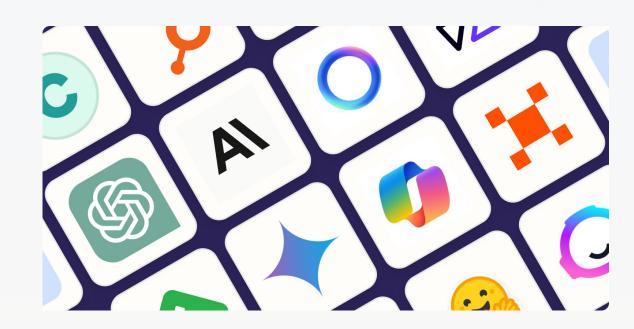


Summer schools Hackathon

Coordinator of the recovery of Ukrainian Astronomy

Web developer and Software developer in the past





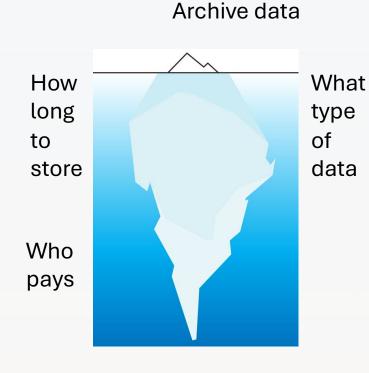


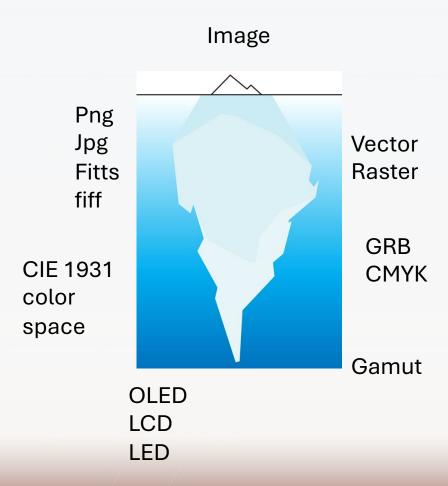

# Addressing the Elephant in the Room: Al and Chatbots

Asking the right questions and understanding the ideas is more important than ever — that's what I aim to do here.

Since you can simply ask ChatGPT (please not the new version of Grok) for step-by-step DS9 instructions — and it works."




https://zapier.com/blog/best-ai-chatbot/




## **Images and Archives Are Like Icebergs**

The beauty is just the tip; the complexity is hidden below.







https://commons.wikimedia.org/wiki/File:Titanic\_in\_color.png

https://www.pinterest.com/pin/tip-of-the-iceberg-poster-189151253084507208/



## Huge volumes of astronomical data from multiple missions

https://imagine.gsfc.nasa.gov/science/toolbox/emspectrum observatories1.html



#### No One-Size-Fits-All

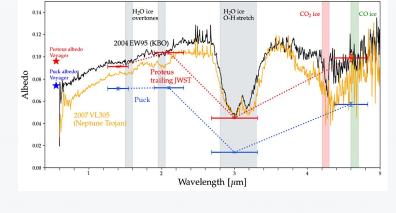
Archives are shaped by:

Mission goals

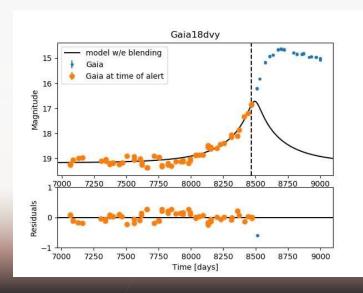
Instruments

Wavelength coverage

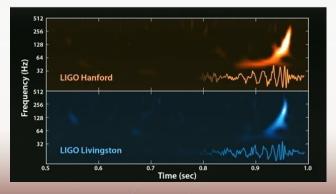
Examples:


**Gaia**: astrometry & photometry

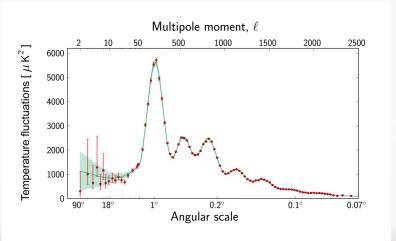
**JWST**: IR imaging/spectroscopy


**Planck**: microwave background

XMM-Newton: X-ray spectra

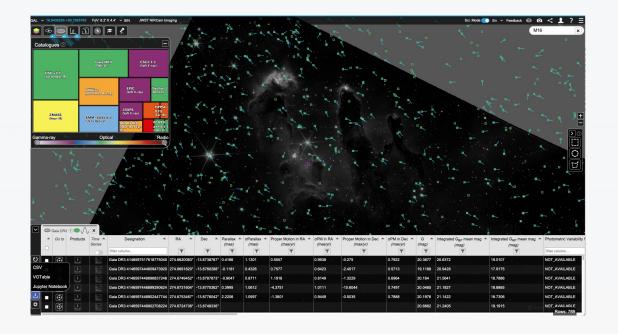






Archives are unique, science-driven, and often incompatible without translation tools



Xiv.2201.122




https://sci.esa.int/web/planck/-/51555-planck-power-spectrum-of-temperaturefluctuations-in-the-cosmic-microwave-background

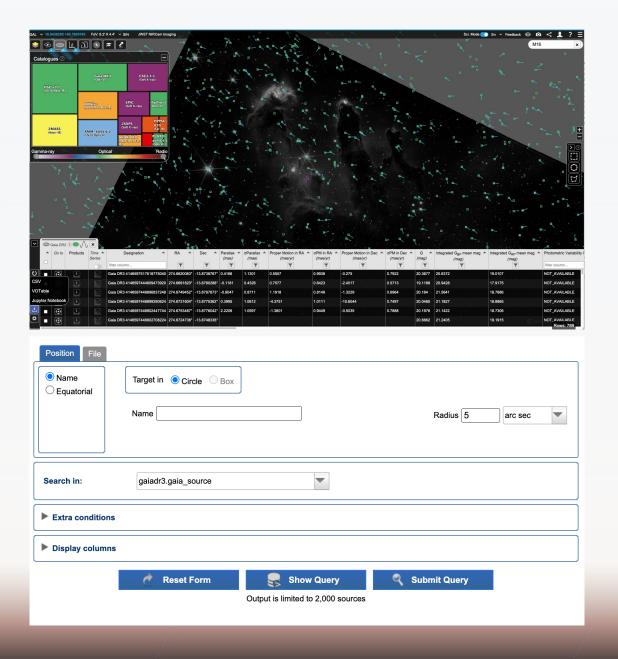


LIGO/Phys. Rev. Lett. 116 061102





#### **Access Modes**


Web interfaces (ESA Sky, MAST, IRSA, etc.)

APIs and programmatic access (e.g., astroquery)

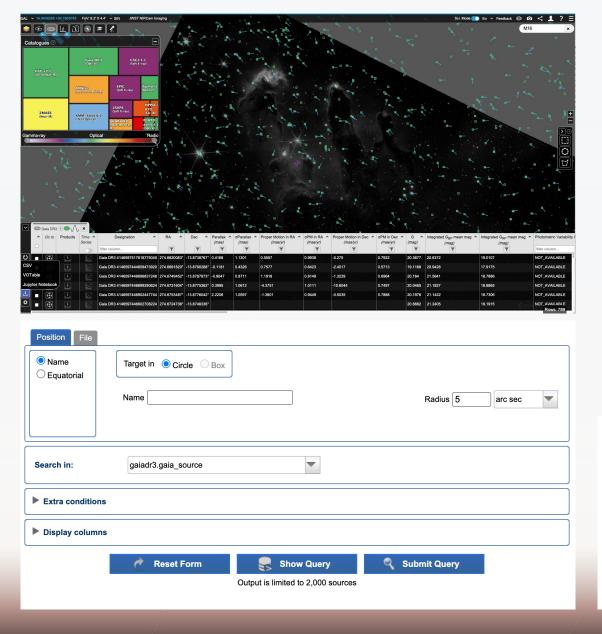
Table downloads, cutout services, cone searches

Different missions & archives may support different modes — choose what fits your workflow!





#### **Access Modes**


Web interfaces (ESA Sky, MAST, IRSA, etc.)

APIs and programmatic access (e.g., astroquery)

Table downloads, cutout services, cone searches

Different missions & archives may support different modes — choose what fits your workflow!





#### **Access Modes**

Web interfaces (ESA Sky, MAST, IRSA, etc.)

APIs and programmatic access (e.g., astroquery)

Table downloads, cutout services, cone searches

— choose what fits your workflow!



#### No One-Size-Fits-All

Archives are shaped by: Examples:

• Mission goals **Gaia**: astrometry & photometry

Instruments **JWST**: IR imaging/spectroscopy

Wavelength **Planck**: microwave background

coverage **XMM-Newton**: X-ray spectra

#### **Access Modes**

Web interfaces (ESA Sky, MAST, IRSA, etc.)

APIs and programmatic access (e.g., astroquery)

Table downloads, cutout services, cone searches

### **Open vs Restricted Archives**

**Open archives**: Freely accessible data (e.g., Hubble, Gaia, JWST)

**Restricted (proprietary)**: Data under embargo for 6–12

months (or years...)

**Key point:** Always check data rights before using or

publishing.



- Who should build and maintain archives?
   mission team; Dedicated institutions;
   Community-driven or VO (Virtual Observatory)
- How long should data stay online?





▼ Knows instruments & data

X Limited by mission budget & timeline

- Who should build and maintain archives?
   mission team; Dedicated institutions;
   Community-driven or VO (Virtual Observatory)
- How long should data stay online?



- **Mission team** 
  - ▼ Knows instruments & data
  - X Limited by mission budget & timeline

#### **I** Dedicated institutions

- ✓ Long-term expertise & infrastructure
- X Needs sustained funding

## **Developing and Maintaining**

- Who should build and maintain archives?
   mission team; Dedicated institutions;
   Community-driven or VO (Virtual)
- How long should data stay online?

**Observatory**)



- **Mission team** 
  - Knows instruments & data
  - X Limited by mission budget & timeline

#### **III** Dedicated institutions

- ✓ Long-term expertise & infrastructure
- X Needs sustained funding

#### Community/Virtual Observatory

- Shared standards & effort
- X Harder to coordinate

- Who should build and maintain archives?
  - mission team; Dedicated institutions; Community-driven or VO (Virtual Observatory)
- How long should data stay online?



- **Mission team** 
  - Knows instruments & data
  - X Limited by mission budget & timeline

#### **III** Dedicated institutions

- ✓ Long-term expertise & infrastructure
- X Needs sustained funding

#### Community/Virtual Observatory

- Shared standards & effort
- X Harder to coordinate

#### **How Long Should Data Stay Online?**

- Who should build and maintain archives?
   mission team; Dedicated institutions;
   Community-driven or VO (Virtual Observatory)
- How long should data stay online?



- **Mission team** 
  - Knows instruments & data
  - X Limited by mission budget & timeline

#### **III** Dedicated institutions

- ✓ Long-term expertise & infrastructure
- X Needs sustained funding

#### Community/Virtual Observatory

- Shared standards & effort
- X Harder to coordinate

#### **How Long Should Data Stay Online?**

- ✓ Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data

- Who should build and maintain archives?
  - mission team; Dedicated institutions; Community-driven or VO (Virtual Observatory)
- How long should data stay online?

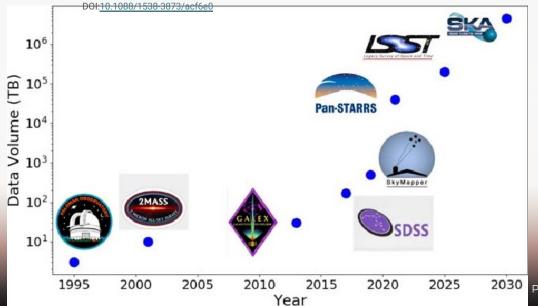


#### **Mission team**

Knows instruments & data

X Limited by mission budget & timeline

#### $\widehat{f I\! I\! I}$ Dedicated institutions


☑ Long-term expertise & infrastructure

X Needs sustained funding

#### Community/Virtual Observatory

Shared standards & effort

X Harder to coordinate



#### **How Long Should Data Stay Online?**

- Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data
- **™** Why not?

Storage & maintaining cost money

- Who should build and maintain archives?
  - mission team; Dedicated institutions; Community-driven or VO (Virtual Observatory)
- How long should data stay online?



- **Mission team** 
  - ▼ Knows instruments & data
  - X Limited by mission budget & timeline

#### **I** Dedicated institutions

- Long-term expertise & infrastructure
- X Needs sustained funding

#### Community/Virtual Observatory

- Shared standards & effort
- X Harder to coordinate

DOI:10.1088/1538-3873/acf6e0



#### **How Long Should Data Stay Online?**

- ✓ Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data
- **™** Why not?

Storage & maintaining cost money

- Who should build and maintain archives?
  - mission team; Dedicated institutions; Community-driven or VO (Virtual Observatory)
- How long should data stay online?





#### **How Long Should Data Stay Online?**

- ✓ Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data
- Why not?

Storage & maintaining cost money

- Who should build and maintain archives?
   mission team; Dedicated institutions;
   Community-driven or VO (Virtual)
  - Community-driven or VO (Virtual Observatory)
- How long should data stay online?



Could we store all the data?



#### **How Long Should Data Stay Online?**

- ✓ Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data
- Why not?

Storage & maintaining cost money

- Who should build and maintain archives?
   mission team; Dedicated institutions;
  - Community-driven or VO (Virtual Observatory)
- How long should data stay online?



Could we store all the data? Yes.



#### **How Long Should Data Stay Online?**

- ✓ Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data
- **™** Why not?

Storage & maintaining cost money

- Who should build and maintain archives?
   mission team; Dedicated institutions;
  - Community-driven or VO (Virtual Observatory)
- How long should data stay online?



Could we store all the data? Yes.

But should we?



#### **How Long Should Data Stay Online?**

- ✓ Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data
- Why not?

Storage & maintaining cost money

## **Developing and Maintaining**

- Who should build and maintain archives?
   mission team; Dedicated institutions;
   Community-driven or VO (Virtual
- How long should data stay online?

**Observatory**)



Could we store all the data? Yes.

But should we? Probably not.



#### **How Long Should Data Stay Online?**

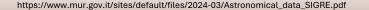
- ✓ Why keep data?
  - Legacy science, reproducibility, cross-mission studies
  - New discoveries from old data
- **™** Why not?

Storage & maintaining cost money

- Who should build and maintain archives?
   mission team; Dedicated institutions;
   Community-driven or VO (Virtual)
  - Community-driven or VO (Virtual Observatory)
- How long should data stay online?



# Making everything more complex: Carbon footprint (ALMA example)


Storage of 1TB of data -> 2000kg/yr of CO2

Transfer of 1 GB of data -> 3kg



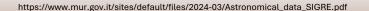


@Wiki



# Making everything more complex: Carbon footprint (ALMA example)

Storage of 1TB of data -> 2000kg/yr of CO2


Transfer of 1 GB of data -> 3kg



A 100 GB dataset in ALMA Archive in 5 yr generates 13000kg of CO2 corresponding to CO<sub>2</sub> generated by 3 cars driven continuously per 1yr CO<sub>2</sub> absorbed by 215 trees in 10 yr



@Wiki



# Making everything more complex: Carbon footprint (ALMA example)

Storage of 1TB of data -> 2000kg/yr of CO2 Transfer of 1 GB of data -> 3kg



A 100 GB dataset in ALMA Archive in 5 yr generates 13000kg of CO2 corresponding to  $CO_2$  generated by 3 cars driven continuously per 1yr  $CO_2$  absorbed by 215 trees in 10 yr

the ALMA archive we have more than 60000 datasets (10GB-1TB size) = = CO2 absorbed by trees covering the whole area of Florence for 10yr



@Wiki

https://www.mur.gov.it/sites/default/files/2024-03/Astronomical\_data\_SIGRE.pdf

#### No One-Size-Fits-All

Archives are shaped by:

Mission goals

Instruments

Wavelength coverage

Examples:

Gaia: astrometry &

photometry

**JWST**: IR

imaging/spectroscopy

Planck: microwave

background

XMM-Newton: X-ray

spectra

#### **Access Modes**

Web interfaces (ESA Sky, MAST, IRSA, etc.)

APIs and programmatic access (e.g., astroquery)

Table downloads, cutout services, cone searches

## **Open vs Restricted Archives**

**Open archives**: Freely accessible data (e.g., Hubble, Gaia, JWST)

**Restricted (proprietary)**: Data under embargo for 6–12 months (or years...)

**Key point:** Always check data rights before using or publishing.

## **Developing and Maintaining**

Who should build and maintain archives?

mission team; Dedicated institutions; Community-driven or VO (Virtual Observatory)

How long should data stay online?



## Centre de Données astronomiques de Strasbourg (CDS)



# **ESA Sky Interface**



Founded in 1972, located in Strasbourg, France

A multidisciplinary team of astronomers, software engineers, and data librarians

Curates and distributes astronomical data from publications, catalogs, and reference images

Provides three major services:

**SIMBAD** – object database with cross-identifiers and bibliography (~7.5 million objects)

**VizieR** – access to catalogs, observation logs, tables, images, spectra, time series

Aladin – interactive sky atlas and Virtual Observatory (VO) portal

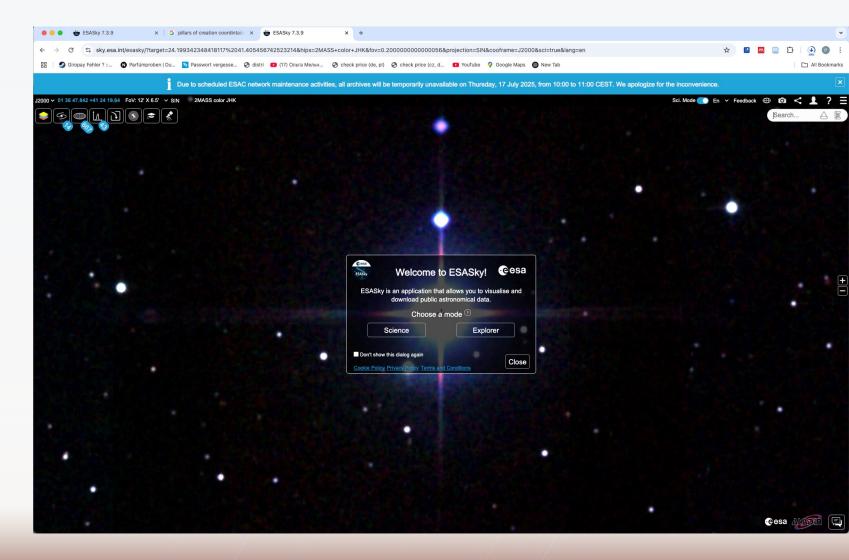
Xmatch - a new tool allowing astronomers to efficiently cross-identify

Sin Bad vevizier alarabin



Unified data access portal for ESA missions (HST, JWST, Gaia, XMM-Newton, Planck, etc.)

Allows sky exploration, image previews, and FITS downloads Combines professional-grade tools with an accessible, visual interface


## **Focusing on ESA SKY**

Why ESA? Unified interface, high usability, access to major missions Overview of <a href="https://sky.esa.int">https://sky.esa.int</a> Supports Hubble, JWST, Gaia, XMM-Newton, Planck, and more

URL: <a href="https://sky.esa.int">https://sky.esa.int</a>

#### Main features:

Sky navigation
Object search
Filter selection
FITS download
Multi-mission layering





## Websites with Professional FITS Image Archives

Professional astronomers use these websites to store and distribute their data, including FITS images. Many of these websites expect people to search for images of specific objects; a list of example objects is presented after this list of websites.

ESASky http://sky.esa.int/

GALEX View (requires Adobe flash)

https://galex.stsci.edu/GalexView/

Herschel Database in Marseille http://hedam.lam.fr/

Herschel User Provided Data Products

http://www.cosmos.esa.int/web/herschel/user-provided-data-products

Mikulski Archive for Space Telescopes (MAST) Portal https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html

Sloan Digitized Sky Survey https://dr12.sdss.org/fields

NASA/IPAC Infrared Science Archive

http://irsa.ipac.caltech.edu/images.html

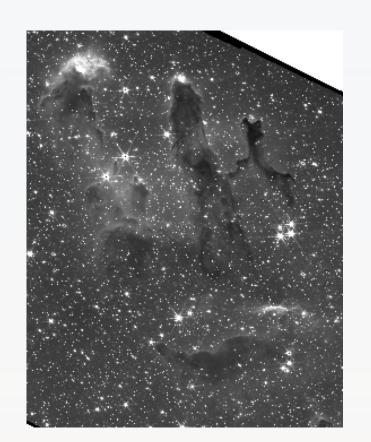
NASA/IPAC Extragalactic Database

http://ned.ipac.caltech.edu/

PanSTARRS-1 Image Access

https://ps1images.stsci.edu/cgi-bin/ps1cutouts

Spitzer 24-160 Micron Data for the Herschel-SPIRE Local Galaxies Guaranteed Time Programs


http://www.jb.man.ac.uk/~gbendo/exchange/SpitzerData/spitzerdata\_main.html

UKIRT InfraRed Deep Sky Surveys

http://wsa.roe.ac.uk:8080/wsa/getlmage\_form.jsp



#### Use JWST and Hubble data of the Pillars of Creation.



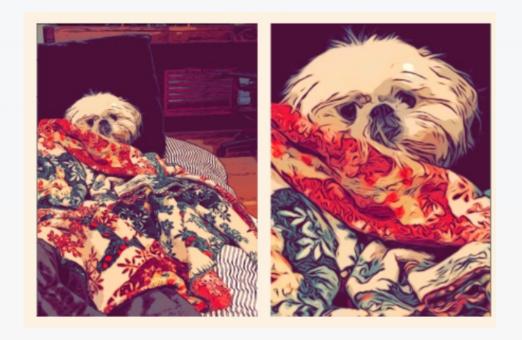




How do we go from grayscale to color?







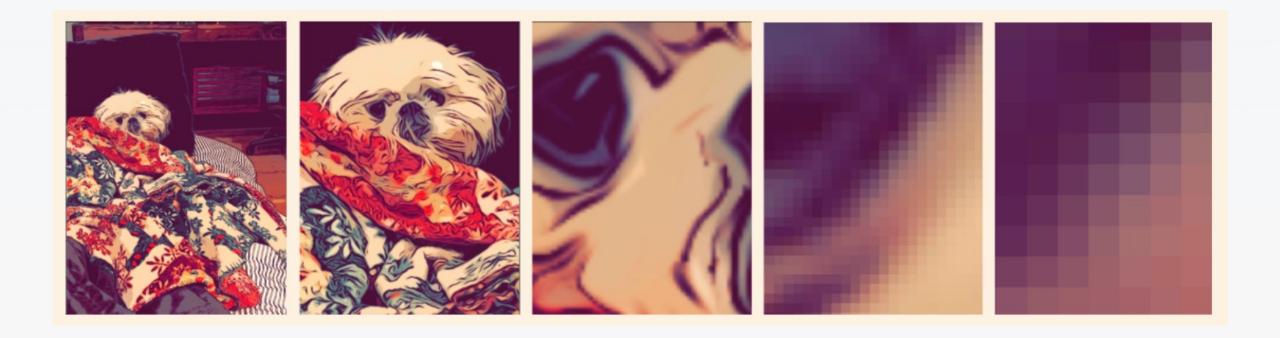

\* Raster
























#### Pillars of Creation (NIRCam Image)

VIEW ALL IMAGES >



## **Download Options**

Full Res (For Print), 8423 X 14589, TIF (163.43 MB)

Full Res (For Display), 8423 X 14589, PNG (152.33 MB)

1155 X 2000, PNG (4.73 MB)

Why "For Display" and "For Print"?

#### What is the difference?





#### What is the difference?



Screens; Additive



Printing; Subtractive

https://www.epackprinting.com/cmyk-subtractive-color-mixing/



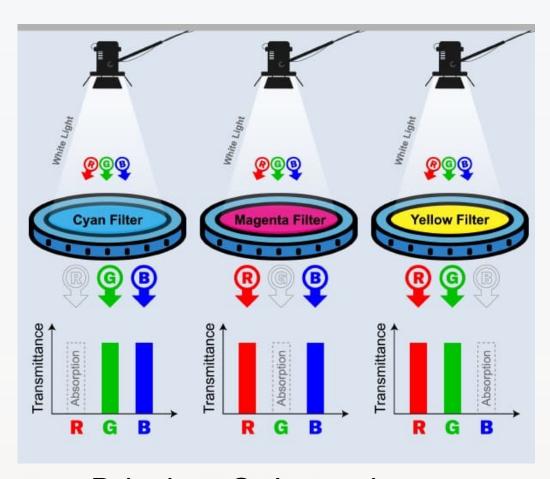
#### What is the difference?



Screens; Additive



Printing; Subtractive


https://www.epackprinting.com/cmyk-subtractive-color-mixing/



#### What is the difference?



Screens; Additive



Printing; Subtractive

https://www.epackprinting.com/cmyk-subtractive-color-mixing/

