Hands-on Session Bringing together Gaia's astrometric and spectroscopic data

Jan Meichsner & Robin Geyer, Lohrmann Observatory, TU Dresden

Outline of this hands-on session

- get you involved with Gaia data selected from the archive
- working with TOPCAT
- focus on the catalogues of DR3 with astrometry, astrophysical parameters, and spectra
- this slides can be obtained from https://lohrmobs.de/HandsOnGaia

Composition of Gaia sky maps, based on different Gaia data products from Gaia DR3

Source: ESA/Gaia/DPAC

Who are we

Robin Geyer

- studied computer science at the Technische Universität Dresden
- worked/studied in HPC/supercomputing
- since 2015 member of Gaia DPAC at TUD
- main tasks:
 - Gaia solution on HPC
 - gravitational waves and astrometry
 - analyse data

Jan Meichsner

- studied physics at the Technische Universität Dresden
- PhD in Mathematics at the Technische Universität Hamburg
- since 2022 member of Gaia DPAC at TUD
- main tasks:
 - be the math support
 - modelling the basic angle variations
 - analyse data

Gaia Data Products I

Gaia Data Products II

- Simple data ("plain tables" with unique source_id)
 - Mean astrometry, photometry, radial velocity, classifications, etc.
 - Astrophysical parameters from spectras (BP/RP, RVS)
 - Collections of special sources: extra-galactic, reference frame, non-single stars, solar system observations, ...
- Large or complex ("ancillary") data
 - Epoch photometry (light curves)
 - Mean BP/RP spectra
 - Mean RVS spectra
 - Classification data
 - ...

Gaia Data Products III

An example of tabular data

key	value	key	value
designation	Gaia DR3 4111834567779557376	has_xp_continuous	true
$source_id$	4111834567779557376	has_xp_sampled	true
ra	256.5229102004341	has_rvs	true
dec	-26.580565130784702	has_epoch_photometry	true
parallax	1.153767464787478	has_epoch_rv	true
pmra	0.3895503169963796	has_mcmc_gspphot	true
pmdec	-0.28926539375145477	has_mcmc_msc	true
ruwe	0.83691496	teff_gspphot	5934.4375
phot_g_mean_mag	7.069333	logg_gspphot	1.769
bp_rp	1.1675663	mh_gspphot	-0.5115
radial_velocity	-27.150185	distance_gspphot	1024.4829
phot_variable_flag	VARIABLE	azero_gspphot	1.0671
ebpminrp_gspphot	0.4736	ag_gspphot	0.8745
non_single_star	0		

Gaia Data Products IV

An example of large ancillary data. More exist:

- Markov-Chain Monte-Carlo samples for classification
- Specific Object Studies
- ► All-sky total galactic extinction maps

Data Access

There are multiple ways to access the data products

The Hertzsprung-Russell diagram

- created 1911 by Ejnar Hertzsprung and in 1913 by Henry Norris Russell
- shows the relation between luminosity of a star and its surface temperature
- the difference between apparent brightness in two spectral bands (BP - RP), commonly called *colour* in astronomy, can be used as proxy for temperature

Source: https://commons.wikimedia.org/wiki/File: Updated_Hertzsprung=Russell_Diagram.jpg, Autor: Daniel William "Danny" Wilson, License: CC BY-SA 4.0

Part I: Querying the Gaia Archive

- use the Gaia archive (https://gea.esac.esa.int/archive/)
 - click SEARCH, Advanced (ADQL)
 - use the query from the screenshot
 - left-hand side tells you about available tables
 - join smaller on bigger table
 - also check out HELP

The query give **353.640 individual sources**. Save the dataset to your local disk.

Part II: HR diagram

- use the Graphics | Plane Plot menu item or toolbar button
 - use , downloaded the dataset you just
 - X "phot_bp_mean_mag phot_rp_mean_mag"
 - **Y** "phot_g_mean_mag"
 - use Axes | Coords | Y Flip
 - change under Form the point Mode to weighted and Combine to count
 - use further Aux Axis | Shader | Rainbow2
 - tick Shader Flip
 - choose **Scaling:** log

HR diagram II

- ► The HRD from the dataset looks noisy
- using the absolute magnitude in the Y axis gives some improvement:

```
Y "phot_g_mean_mag - 5*log10(1000 / parallax) + 5"
```


HR diagram II

- ► The HRD from the dataset looks noisy
- using the absolute magnitude in the Y axis gives some improvement:

```
Y "phot_g_mean_mag - 5*log10(1000 / parallax) + 5"
```

- apply some quality filtering on the data.
 - use (Display row subsets) and create (1) the subsets:
 - **goodRuwe:** ruwe < 1.2
 - phot_rp_mean_flux_over_error > 10 &&
 phot_bp_mean_flux_over_error > 10
 - ▶ good: goodRuwe && goodColour

HR diagram III

A lot of astrophysics already visible here . . .

Part III: And now you - playing time

- ▶ find Columns telling you something about temperature T (search for "teff") and define sub-selections, say, $T < 5000 \, \text{K}$, $5000 < T < 10000 \, \text{K}$, and $T < 10000 \, \text{K}$. Make them visible in the HR diagram
- ightharpoonup same for star radii R ($R < 0.5 \, R_{Sun}$, $0.5 \, R_{Sun} < R < 1.0 \, R_{Sun}$, $R > 1.0 \, R_{Sun}$)
- ► find a smarter solution to the first two points than defining discrete categories (Hint: Play with the Weight option of the shader)

The main sequence when you colour code with temperatures

The main sequence when you colour code with radii

Spectra where?

- define goodSpec: good && has_xp_sampled == true
- have a look on Display table cell data and highlight this subset. Grab any source ID from there.
- go back to the Gaia archive and try this source ID under SINGLE OBJECT as Gaia DR3 YOUR SOURCEID
- check out the spectrum

Part IV: And what if I have a name but no source IDs?

- ▶ we want to have a look at the *Eagle Nebula* (M16), in particular the "Pillars of Creation"
- ▶ go back to the Archive (https://gea.esac.esa.int/archive/) and use Basic (tick Name) to search for M16 with a radius of 25 arcmin
- before submitting the query, use Show Query, and replace everything between SELECT and FROM gaiadr3.gaia_source by *. Also get rid of ORDER BY target_id, "target_separation (deg)" at the end
- download the result and load the table in TOPCAT

Proper motion space

- try to separate Eagle Nebula members from foreground/background sources.
- plot sources in proper motion space
 - use the Graphics Plane Plot menu item or toolbar button
 - X "pmra"
 - ► Y "pmdec"
 - adjust the plotted points under Form using
 - Mode weighted, Combine count
- we know from SIMBAD that the PM of the cluster should be $\mu_{\alpha*}=0.178\,\mathrm{mas/yr}$ and $\mu_{\delta}=-1.576\,\mathrm{mas/yr}$
- graphically select this co-moving cluster as new subset
 - select the blob using button, drag mouse, again
 - ► New Subset Name "pavlo_sel"

Additional stuff

Data Access - Links

Other ways to access the data:

- ► TOPCAT can be downloaded here
 - https://www.star.bris.ac.uk/~mbt/topcat/
- ▶ how-to for the command line API can be found here
 - https://www.cosmos.esa.int/web/gaia-users/archive/
 programmatic-access#CommandLine_Tap
- how-to for access via Python
 - astroquery.gaia documentation:

```
https://astroquery.readthedocs.io/en/latest/gaia/gaia.html
```

- simple Python access: https://www.cosmos.esa.int/web/gaia-users/ archive/use-cases#ClusterAnalysisPythonTutorial
- complex Python access: https://www.cosmos.esa.int/web/gaia-users/ archive/datalink-products#datalink_jntb_get_all
- a list of partner data centres can be found under
 - ▶ https://www.cosmos.esa.int/web/gaia/data-access#PartnerDataCentres

Data Model Descriptions

When writing ADQL queries, or searching for something specific, its good to know what data exist.

- a list of all tables and their content can be found under
 - ▶ for DR3: https://gea.esac.esa.int/archive/documentation/GDR3/Gaia_ archive/chap_datamodel/
 - ► for FPR: https://gea.esac.esa.int/archive/documentation/FPR/index.html
- ▶ the ADQL query website and TOPCAT also have short descriptions for each field

ADQL Tips and Tricks I

- ▶ ADQL warnings: POWER, SIN, COS are slow and 1/3600 is not 1./3600.
- ▶ Use gaia_source_lite: fewer (specialised) columns give faster queries
- ▶ Don't be lazy: don't SELECT *, retrieve only your fields of interest
- Use indexed fields + pre-computed fields + constraints, see bold fields in the web GUI tooltips for indexed fields and the data model for pre-computed fields (e.g., bp_rp and parallax_over_error)
- $lue{}$ Optimise cross-matches: place the smallest catalogue first and use JOIN + ON
- ► Avoid TOP + ORDER BY: use two queries and JOB_UPLOAD to sort the result
- Randomise use the random_index field to define representative samples
- ▶ Divide and conquer: split big queries in chunks using random_index
- Ask the Helpdesk: ask for extended time-out or storage quota or query advise

A funny task for fast students: explain what the "objects" in this proper-motion scatterplot are, or more general how you can overall explain this plot. This is from a 1 deg cone search around M16.

