From starlight to spectra and inference of stellar properties

Brankica Kubátová

brankica kubatova@asu cas cz

Stellar Physics Department
Astronomical Institute of the CAS

July 21, 2025

Outline

- 1. Who I am?
- 2. Introduction to stellar spectroscopy
- 3. Spectral types and stellar classification
- 4. Quantitative stellar spectroscopy
- 5. Stellar atmosphere models

Who I am?

- I obtained my BSc and MSc in astrophysics from the University of Belgrade in Serbia.
- I obtained my Ph.D. in Theoretical Physics and Astrophysics from Charles University in Prague.
- I had two postdocs at the ASU in Ondřejov.
- Currently, I am the head of the Stellar Physics Department at ASU.
- Research interests: Massive hot stars and their winds, radiative transfer in inhomogeneous medium (e.g. clumping), quantitative spectroscopy - modelling and analyzing massive star spectra, studding the line profile variability of massive stars, stellar evolution of low metallicities stars.
- PoWR code Potsdam stellar atmosphere code (e.g., Hamann & Gräfener 2003, 2004;
 Sander et al. 2015) for simulating the spectra of hot stars, particularly Wolf-Rayet (WR) and OB-type stars.

Definition

■ Spectroscopy is the study of the interaction between electromagnetic radiation (light) with matter in stars and analyzing the resulting spectra to infer various stellar properties.

Definition

- The technique of splitting light (i.e., electromagnetic radiation) into its constituent wavelengths, i.e., a spectrum.
- Dispersive elements: Prism and Grating.

• A Schematic Diagram of a Slit Spectrograph (Image taken from https://www.findlight.net).

 Spectra taken with single order spectrograph attached to 2m Perek Telescope at Ondřejov observatory, in Czech Republic.

July 21, 2025

- Échelle Grating For high resolution astronomical work échelle is the preferred choice over a grating used in low order.
- The reasons for this are:
 - Two dimensional format that permits broad spectral coverage.
 - Allows compact spectrograph design.
- Échelle has a large groove spacing and is used at high order number, thus it is necessary to use a cross-disperser to separate the orders, or to use a filter to isolate a single orders.

Credit: Image taken from Shen et al. 2018.

• Spectra taken with Ondřejov Échelle spectrograph (OES) attached to 2m Perek Telescope at Ondřejov observatory, in Czech Republic.

• Solar spectrum covering almost the entire optical range, obtained using the HIRES echelle spectrograph on the 10 m Keck telescope, Hawaii.

• FIES - The spectrograph is a cross-dispersed Echelle spectrograph attached to the Nordic Optical Telescope (NOT) at La Palma in the Canary Islands.

Credit: NOT.

- Types of Spectra
 - Continuous Spectrum Emitted by a dense, hot object (e.g., a star's photosphere) that radiates light at all wavelengths without gaps, resembling a blackbody curve.
 - **Absorption Line Spectrum** Formed when light from a continuous source passes through a cooler gas, causing absorption of light by he atoms and molecules within the gas.
 - Emission line Spectrum Starlight can also heat up a cloud of gas, exciting the atoms and molecules within the gas, and causing it to emit light.

• Spectral comparison of the Sun with the metal-poor stars CD 38° 245 and HE 01075240 (figure taken from Christlieb et al. 2004).

• Supergiant ζ Puppis observed with Copernicus and IUE (figure taken from Pauldrach et al. 1994).

• Supergiant ζ Puppis observed with Copernicus and IUE (figure taken from Pauldrach et al. 1994).

Stellar Classification

- The classification is based on the relative strengths and shape of spectral lines which are mainly sensitive to stellar surface temperatures.
- The lines of each atom or molecule are strongest at particular temperature.

Stellar Classification

- The classification is based on the relative strengths and shape of spectral lines which are mainly sensitive to stellar surface temperatures.
- The lines of each atom or molecule are strongest at particular temperature.
- Comparing line strengths, we can measure a star's surface temperature!

Equivalent width

(Line strength)

$$W_{\lambda} = \int (1 - F_{\lambda}/F_{\lambda c} d\lambda)$$

See Camila's talk!

- Stellar Classification Harvard Classification System
 - Standard Stellar Types (O, B, A, F, G, K, and M).
 - Subtypes Subclasses numbered 0 to 9 (Sun is stellar type G2).

Class	Effective temperature ^{[1][2][3]}	Vega-relative "color label" [4][nb 1]	Chromaticity ^[5] [6][7][nb 2]	Main-sequence mass ^{[1][8]} (solar masses)	Main-sequence radius ^{[1][8]} (solar radii)	Main-sequence luminosity ^{[1][8]} (bolometric)	Hydrogen lines	Fraction of all main- sequence stars ^[9]
0	≥ 30,000 K	blue	blue	≥ 16 <i>M</i> _⊙	≥ 6.6 <i>R</i> _⊙	≥ 30,000 <i>L</i> _⊙	Weak	~0.00003%
В	10,000–30,000 K	blue white	deep blue white	2.1−16 <i>M</i> _⊙	1.8–6.6 <i>R</i> _⊙	25–30,000 L _☉	Medium	0.13%
A	7,500–10,000 K	white	blue white	1.4–2.1 <i>M</i> _⊙	1.4–1.8 <i>R</i> _⊙	5–25 L _☉	Strong	0.6%
F	6,000–7,500 K	yellow white	white	1.04–1.4 M _☉	1.15–1.4 <i>R</i> _⊙	1.5–5 L _☉	Medium	3%
G	5,200–6,000 K	yellow	yellowish white	0.8–1.04 M _☉	0.96–1.15 <i>R</i> _⊙	0.6–1.5 <i>L</i> _⊙	Weak	7.6%
К	3,700–5,200 K	orange	pale yellow orange	0.45–0.8 <i>M</i> _⊙	0.7–0.96 ₽₀	0.08–0.6 <i>L</i> _⊙	Very weak	12.1%
M	2,400–3,700 K	red	light orange red	0.08–0.45 M _☉	≤ 0.7 R _☉	≤ 0.08 <i>L</i> _⊙	Very weak	76.45%

Credit: Wikipedia.

• Stellar Luminosity Classes - Yerkes classification System

Stellar surface gravity

$$g = \frac{G \cdot M_*}{R_*^2}$$

• Stellar Luminosity Classes - Yerkes classification System

Stellar surface gravity

$$g = \frac{G \cdot M_*}{R_*^2}$$

• Hertzsprung-Russell diagram shows stars at different evolutionary stages.

Mass-Luminosity Relation

$$\frac{L_*}{L\odot} = \left(\frac{M_*}{M_\odot}\right)^a$$

a=3.5 - for the stars on the main sequence

See Gabriele's talk!

• Planck function and Stefan-Boltzmann law

Wien's displacement law

- Quantitative Spectroscopy a technique from which we can extract information about the physical properties and surface chemical composition of stars.
- Determination of physical parameters that (uniquely and completely?) characterize a star.

- Quantitative Spectroscopy a technique from which we can extract information about the physical properties and surface chemical composition of stars.
- Determination of physical parameters that (uniquely and completely?) characterize a star.
- Only a proper modeling of the stellar atmosphere can reproduce the emergent spectrum.

- Ingredients
 - Observed spectra and their processing
 - Theoretical (synthetic) spectra (model atmosphere/line formation codes)
 - Grid of models
- What should we worry about?
 - Information encoded in the observed data (both quantity and quality)
 - ► How many spectra we need (single spectra or time series spectra)
 - Spectral range coverage
 - ► Signal-to-noise ratio (SNR)
 - ► Resolution (R)

- Resolving power (R) Tells how small details we can resolve in the spectrum.
- It is defined as $\lambda/\Delta\lambda$.
- Examples
 - \blacksquare R = 1000 at $6500 \text{ Å gives } \Delta \lambda = 6.5 \text{ Å or } 300 \text{ km/s}$
 - lacksquare R=10000 at $6500~\mathring{A}$ gives $\Delta\lambda=0.65~\mathring{A}$ or $30~\mathrm{km/s}$
 - \blacksquare R = 100000 at $6500~\mathring{A}$ gives $\Delta \lambda = 0.065~\mathring{A}$ or $3~\mathrm{km/s}$
- At the given R, the resolution in velocity doesn't change with wavelength.
 - $\mathbf{R} = \lambda/\Delta\lambda = c/\Delta\mathbf{v}$
- For seeing detailed structures in spectra the spectral resolution has to be high.
- For study the composition of stellar atmosphere and determination of element abundances we need high resolution spectroscopy.

• Lines get "diluted" with low resolution.

Credit: H. Korhonen.

Choose an instrument wisely!

Processing of the observed spectrum

- Reducing spectra
- Normalize spectra
- Correct the observed spectrum for:
 - Telluric (atmospheric) lines
 - Interstellar lines diffuse interstellar bands (DIBs)
 - Cosmic rays

IRAF - commonly used software

Processing of the observed spectrum

- Reducing spectra
- Normalize spectra
- Correct the observed spectrum for:
 - Telluric (atmospheric) lines
 - Interstellar lines diffuse interstellar bands (DIBs)
 - Cosmic rays

Figure taken from Matheson et al. 2000, AJ, 120, 1499 - Ttelluric absorption lines at KPNO.

Processing of the observed spectrum

- Reducing spectra
- Normalize spectra
- Correct the observed spectrum for:
 - Telluric (atmospheric) lines
 - Interstellar lines diffuse interstellar bands (DIBs)
 - Cosmic rays

Molecfit - A general tool for removal of atmospheric absorption features.

Figure taken from Kausch et al. 2015, A&A 576, A78 - Telluric absorption corrected spectrum (red) and the original spectrum (black)

Processing of the observed spectrum

- Reducing spectra
- Normalize spectra
- Correct the observed spectrum for:
 - Telluric (atmospheric) lines
 - Interstellar lines diffuse interstellar bands (DIBs)
 - Cosmic rays

Diffuse Interstellar Bands in ξ Per O7.5 III spectrum

Credit: Paolo Valisa.

Processing of the observed spectrum

- Reducing spectra
- Normalize spectra
- Correct the observed spectrum for:
 - Telluric (atmospheric) lines
 - Interstellar lines diffuse interstellar bands (DIBs)
 - Cosmic rays

Image taken from Sinead & Hennelly 2019

- Ingredients
 - Observed spectra and their processing
 - Theoretical spectra (model atmosphere/line formation codes
 - Comparison metrics (grid of models)
- What should we worry about?
 - Physics incorporated in the models (i.e., assumptions/simplifications)
 - Atomic data
 - Grid of models
 - Uncertainties/Errors
- Calculation of the grid of the models
 - Define the parameter space (free parameters)
 - Define the range of values for free parameters
 - Fix some parameters

Spectroscopy Made Easy (SME) (Valenti & Piskunov, 1996, 2017)

- PySME (Wehrhahn et al. 2022) create high-resolution synthetic spectra, based on a range
 of stellar parameters, a linelist and a model atmosphere. It can also be used the other way
 around. Give PySME an observation and it will determine the best fit stellar parameters for
 that spectrum.
- webSME Pipeline preview available at http://pipeline.chetec-infra.eu (developed by Johannes Puschnig).

See Andreas's talk!

- Stellar Atmosphere is all we really see from a star.
- Emergent radiation gives the only information about the star we have to understand how the emergent stellar radiation forms.
- Radiation is influenced by stellar atmosphere => solution of radiative transfer equation is necessary.
- Radiative Transfer describes how radiation propagates through the stellar atmosphere, interacting with gas particles via absorption, emission, and scattering.

©Michael Richmond

Tasks in stellar atmosphere modelling

- Prediction of emergent radiation (the only observable quantity).
- Understanding of physical processes in stellar atmospheres.

Model formulation

- \bullet For given basic parameters: R_* , M_* , L_* $(T_{\rm eff}$, $\log g)$, \dot{M} , $v_{\infty}.$
- Spatial dependence of quantities $T(\vec{r})$, $\rho(\vec{r})$, $\vec{v}(\vec{r})$, $n_e(\vec{r})$, $n_i(\vec{r})$, $J(\nu, \vec{r})$, ...
- Solving the set of equations describing stellar atmospheres.
- Computation of a synthetic stellar spectrum.

Atomic and Molecular Data

• Accurate determination of stellar parameters depends on adequate atomic and molecular data. Completeness of this data is crucial for atmospheric and abundance analysis.

Approximations in stellar atmosphere modelling

- Geometry approximations (symmetries)
 - one-dimensional (1-D) atmosphere (types: plane-parallel or spherically symmetric)
- Stellar atmosphere structure
 - Photosphere (quasi-static, continuous spectrum)
 - Stellar wind (moving extending atmosphere)
- Physical approximations
 - Stationary medium $(\partial/\partial t = 0)$
 - Static medium ($\vec{v} = 0$)
- Equilibrium distributions
 - Local thermodynamic equilibrium (LTE)
 - particle velocities Maxvell eq.
 - energy levels population –Saha-Bolzmann eq.
 - radiation field Planck eq.
 - Kinetic (statistical) equilibrium (NLTE)
 - particle velocities Maxvell eq.
 - energy levels population –kinetic (statistical) equilibrium equations
 - radiation field radiative transfer eq.

Equations of model stellar atmospheres

radiative transfer equation (III)

$$\mu \frac{\mathrm{d} I_{\mu\nu}}{\mathrm{d} z} = -\chi_{\nu} I_{\mu\nu} + \eta_{\nu} \qquad \qquad \mu \frac{\partial I_{\mu\nu}}{\partial r} + \frac{1 - \mu^2}{r} \frac{\partial I_{\mu\nu}}{\partial \mu} = \eta_{\nu} - \chi_{\nu} I_{\mu\nu}$$

radiative equilibrium equation (7)

$$4\pi\int_0^\infty \left(\chi_
u J_
u - \eta_
u
ight) \,\mathrm{d}
u = 0$$

hydrostatic equilibrium equation (p)

$$\frac{\mathrm{d}p}{\mathrm{d}m} = g - \frac{4\pi}{c} \int_0^\infty \frac{\chi_\nu}{\rho} H_\nu \frac{\mathrm{d}\nu}{\Phi}$$

kinetic (statistical) equilibrium equations (n_i)

$$n_{i}\sum_{l}(R_{il}+C_{il})+\sum_{l}n_{l}(R_{li}+C_{li})=0$$

- Solution of equations of model stellar atmosphere
 - System of nonlinear integrodifferential equations
 - Analytic solution impossible
 - Numerical solution
 - ► Complete linearization method (multidimensional Newton-Raphson method)
 - Accelerated Λ-iteration method (Jacobi iteration method)
- Recommendation: Theory of Stellar Atmospheres: An Introduction to Astrophysical Non-equilibrium Quantitative Spectroscopic Analysis, Ivan Hubeny & Dimitri Mihalas, 2014.

See Arūnas's talk!

• Supergiant ζ Puppis observed with FEROS (Bouret et al., 2012). CMFGEN (Hillier 1990; Hillier & Miller 1998) synthetic spectra in red.

• Supergiant ζ Puppis observed with Copernicus and IUE (Bouret et al., 20212). CMFGEN (Hillier 1990; Hillier & Miller 1998) synthetic spectra in red.

Thank you for your attention!

Have a fun with modelling!

©Michael Richmond