
1

Advancing humanity.
Engineering remarkable.

EPICS Training
HZB EPICS Summer School 2025

Žiga Oven

ziga.oven@cosylab.com

2

EPICS Foundations

3

Overview

• Lay the foundation for understanding an EPICS control system
• Introduce IOCs

• Channel Access (CA)
• Database
• Sequencer
• Device Support

• Choosing the correct tools for the job
• When to use a database
• The sequencer, what is it good for?
• Why write your own CA client program?

• How fast is EPICS?
• How to find more information

• Website walk through

4

Custom
Chassis/Panels

Commercial
Instruments

IOC
IOC

IOC

IOC
CAS

CAS

Channel Access

IOC Software
EPICS Database

Sequence
Programs

Custom
ProgramsReal-time

Control

Client Software
EDM

ALH StripToolTCL/TK

Perl Scripts

CS-Studio

Many, many
others

CA Server Application
Technical
Equipment

Process Variables

Canonical Form of an EPICS Control System

5

Introducing the IOC

• Input Output Controller

• A computer running software called “IOC Core”

• The computer can be:

• VME based, running VxWorks (only choice until Release 3.14) or RTEMS

• PC running Windows, Linux, RTEMS

• Apple running OSX

• UNIX Workstation running Solaris

• Usually has Input and/or Output devices attached

• An EPICS control system must consist of at least one Channel Access Server (usually an IOC)

• An IOC has one or more databases loaded.

• The database tells it what to do

6

Inside an IOC

• The major software components of an IOC (IOC Core)
LAN

I/O Hardware

IOC

Database Sequencer

Device Support

Channel Access

7

Channel Access

• Allows other programs (CA Clients) to see and
change values of Process Variables in an IOC (CA
Server)

• CA Clients may
• Put (write)

• Get (read)

• Monitor

data of Process Variables

• IOCs are both CA clients and CA servers. They
can interact with data in other IOCs

• A CA Client can connect to many servers

• A CA Server may serve many clients

• A very efficient and reliable protocol

CA Client

CA Server

Workstation

IOC

Network

8

Inside an IOC

• The major software components of an IOC (IOC Core)

Channel Access

LAN

Sequencer

Device Support

I/O Hardware

IOC

Database

9

EPICS Databases – What are they for?

• Interface to process instrumentation

• Distribute processing

• Provide external access to all process information

• Use common, proven, objects (records) to collect,
process and distribute data

• Provide a common toolkit for creating applications

10

What are records?

• A record is an object with

• A unique name

• Properties (fields) that contain information (data)

• The ability to perform actions on that data

• For example, a personnel record in a relational database has a name, and fields containing data.

XYZ1234

Employee: James Bond

Badge # : 007

Address : Whitehall, London

Salary : £70070.07

Unique record name

Fields Data

11

What are EPICS records?

• A record is an object with…

• A unique name e.g. S28:waterPressure.

• Controllable properties (fields) e.g. EGU.

• A behavior - defined by its record type.

• Optional associated hardware I/O (device support).

• Links to other records.

• Each field can be accessed individually by name.

• A record name and field name combined give the name of a process variable (PV).

• A Process Variable name is what Channel Access needs to access data.

12

A Process Variable Name

• A PV name is comprised of two parts

• The record name, and

• the name of a field belonging to that record

• For example…

• Note: If no field name is given, Channel Access will default to using the .VAL field

• i.e. to CA, “L1:water:temperature” = “L1:water:temperature.VAL”

A record name

L1:water:temperature

A field name

EGU.

A dot to join them

= L1:water:temperature.EGU

A PV name

13

What do records do?

• Records are active, they do things

• Get data from other records or from hardware

• Perform calculations

• Check values are in range and raise alarms

• Put data into other records or into hardware

• Activate or disable other records

• Wait for hardware signals (interrupts)

• What a record does depends upon its type and the values in its fields.

• A wide range of records have already been created.

• New record types can be added to a new application as needed.

• A record does nothing until it is processed.

14

Record Types

• Classified into four general types

• Input, e.g.
• Analog In (AI)
• Binary In (BI)
• String In (SI)

• Algorithm/control, e.g.
• Calculation (CALC)
• Subroutine (SUB)

• Output, e.g.
• Analog Out (AO)
• Binary Out (BO)

• Custom, e.g.
• Beam Position Monitor
• Multi-Channel Analyzer

15

Some Record Types

• Analog in
• Analog out
• Binary in
• Binary out
• Calculation
• Calculation out
• Compression
• Data fanout
• Event
• Fanout
• Histogram
• Motor
• Multi bit binary input

• Multi bit binary output
• PID control
• Pulse counter
• Pulse delay
• Scan
• Select
• Sequence
• String in
• String out
• Subarray
• Subroutine
• Waveform

16

Graphical View of a Record

17

IOC View of a Record
record(ao,"DemandTemp") {

field(DESC,"Temperature")
field(ASG,"")
field(SCAN,"Passive")
field(PINI,"NO")
field(PHAS,"0")
field(EVNT,"0")
field(DTYP,"VMIC 4100")
field(DISV,"1")
field(SDIS,"")
field(DISS,"NO_ALARM")
field(PRIO,"LOW")
field(FLNK,"")
field(OUT,"#C0 S0")
field(OROC,"0.0e+00")
field(DOL,"")
field(OMSL,"supervisory")
field(OIF,"Full")
field(PREC,"1")
field(LINR,"NO CONVERSION")
field(EGUF,"100")
field(EGUL,"0")
field(EGU,"Celsius")

field(DRVH,"100")
field(DRVL,"0")
field(HOPR,"80")
field(LOPR,"10")
field(HIHI,"0.0e+00")
field(LOLO,"0.0e+00")
field(HIGH,"0.0e+00")
field(LOW,"0.0e+00")
field(HHSV,"NO_ALARM")
field(LLSV,"NO_ALARM")
field(HSV,"NO_ALARM")
field(LSV,"NO_ALARM")
field(HYST,"0.0e+00")
field(ADEL,"0.0e+00")
field(MDEL,"0.0e+00")
field(SIOL,"")
field(SIML,"")
field(SIMS,"NO_ALARM")
field(IVOA,"Continue

normally")
field(IVOV,"0.0e+00")

}

18

EPICS Databases – What are they?

• A collection of one or more EPICS records of various types.
• Records can be interconnected and are used as building blocks to create

applications.
• A data file that’s loaded into IOC memory at boot time.
• Channel access talks to the IOC memory copy of the database.

19

Analog In

ProcTemp

EGU : deg C

VALINP

Temperature

Sensor

IOC

Database

Analog to

Digital

Converter

0 – 100°C

0 – 10V

8 bit ADC

0 – 10V

0 – 255

EGUL: 0

EGUF: 100

HIGH: 51

Process

45.5°C 4.55V 116

Channel Access Server

Normal Operation

5 - 50°C

Channel Access Client

Tell me about

ProcTemp

ProcTemp

.VAL = 45.5

.EGU = deg C

.SEVR = Normal

45.5 deg C
51.5°C 5.15V 132

51.5 deg C

ProcTemp

.VAL = 51.5

.EGU = deg C

.SEVR = MAJOR

Our First Database

20

Record Processing

• Record processing can be periodic, or event driven.

• For periodic record processing, standard scan rates are:

• 10, 5, 2, 1, 0.5, 0.2 and 0.1 seconds

• Custom scan rates can be configured up to speeds allowed by operating system and hardware.

• For event driven record processing, events include:

• Hardware interrupts

• Request from another record via links

• EPICS Events

• Channel Access Puts

21

Channel Access

LAN

Device Support

I/O Hardware

IOC

Database Sequencer

Inside an IOC

• The major software components of an IOC (IOC Core).

22

The Sequencer

• Runs programs written in State Notation Language (SNL).

• SNL is a ‘C’ like language to facilitate programming of sequential operations.

• Fast execution - compiled code.

• Programming interface to extend EPICS in the real-time environment.

• Common uses:

• Provide automated start-up sequences like vacuum or RF where subsystems need coordination.

• Provide fault recovery or transition to a safe state.

• Provide automatic calibration of equipment.

23

State A

State B

Event

Action

Transition
A to B

SNL implements State Transition Diagrams

24

Start

Low vacuum

High vacuum

pressure < 4.9 uTorr

Turn OFF the ION pump

pressure > 5.1 uTorr

Turn ON the ION pump

State Transition Diagram Example

25

Channel Access

LAN

I/O Hardware

IOC

Database Sequencer

Device Support

Inside an IOC

• The major software components of an IOC (IOC Core)

26

• Device and driver support interface hardware to the database

• Examples of devices:

• VME cards: ADC, DAC, Binary I/O etc.

• Motor controllers

• Oscilloscopes

• PLCs

• Cameras

Device Support

27

Device Support

• Usually has to be written for ‘new’ hardware.

• Good news – someone, somewhere has usually written support for your device, or a very similar
one.

• See the EPICS web site for available support.

• Or ask the EPICS community.

28

When to use databases

• Hardware connection
• Real time performance – no network latencies
• Whenever a database is good enough

Advantages Disadvantages

Simplify hardware connection If you have device support

Configuring not programming. You need to understand database use

Database is easily understood by other

EPICS developers

Speed - All processing (often) in same

machine

29

When to use the sequencer

• For sequencing complex events
• e.g. parking and unparking a telescope mirror

Photograph courtesy of the Gemini Telescopes project

30

When to use clients

• To interact with the control system

• Many already exist – CSS, ALH, Strip Tool, archiver,
EDM etc.

• For data analysis or visualization

• Supervisory control

• e.g. to manage an accelerator

31

Functionality Channel Access PV Access

Read PV caget <PV_name> pvget <PV_name>

Get information about the record cainfo <PV_name> pvinfo <PV_name>

Monitor PV for change camonitor <PV_name> pvmonitor <PV_name>

Write to PV caput <PV_name> <value> pvput <PV_name> <value>

Get more information about command

caget -h pvget -h

camonitor -h pvmonitor -h

caput -h pvput -h

Command Line Clients

32

How fast is EPICS?

• Can be fast or slow, it depends how you use it!
• Use the correct tool for the job; Database, sequencer, custom code (ioc) or custom code (client).
• Ultimately speed depends upon hardware.
• Some (a bit old) benchmarks*:

• Database design and periodic scanning affect apparent system speed

Machine OS CPU Speed Rec/sec %CPU

MVME167 vxWorks 68040 33MHz 6000 50

MVME 2306 vxWorks PPC604 300MHz 10000 10

MVME5100 vxWorks PPC750 450MHz 40000** 10**

PC Linux PII 233MHz 10000 27

PC Linux P4 2.4GHz 50000 9

*Benchmark figures courtesy of Steve Hunt (PSI)

**Extrapolated from performance figures provided by L.Hoff, BNL

33

Problem:

In the LINAC we have a water chiller that must be

turned ON whenever the average temperature of

two temperature sensors rises above a set point.

The set point is nominally 10 degrees centigrade.

Binary out

L1:water:chillerCtl

Calculation

L1:water:tempChk

CALC: ((A+B)/2) > C

C: 10

SCAN: 10 second

Analog In

L1:water:temp1

EGU: deg C

VALINP

EGU: deg C

VALINP

INPB

INPA

VAL DOL OUT

T2

Sensor

Sensor

T1

IOC

Database
ADC

ADC

Binary I/O

ChillerAnalog In

L1:water:temp2

Database Processing

34

Binary out

L1:water:chillerCtl

Calculation

L1:water:tempChk

CALC: ((A+B)/2) > C

C: 10

SCAN: 10 second

Analog In

L1:water:temp1

EGU: deg C

VALINP

EGU: deg C

VALINP

INPB

INPA

VAL DOL OUT

IOC

Database
ADC

ADC

Binary I/O

ChillerAnalog In

L1:water:temp2

T2

Sensor

Sensor

T1

C: 15 SCAN: 10 secondC: 10

14°C

12°C

Process

Now

Process

Now

Process

Now

12

14

1

ON

0

OFF

Apparent Performance

35

The EPICS Web Site

• The central site for EPICS information

• Documentation

• Application Developer’s Guide

• Component Reference Manual

• https://docs.epics-controls.org/en/latest/

• CA Clients

• Device support

• Tech-talk

• https://epics-controls.org

https://docs.epics-controls.org/en/latest/
https://docs.epics-controls.org/en/latest/
https://docs.epics-controls.org/en/latest/
https://docs.epics-controls.org/en/latest/
https://epics-controls.org/
https://epics-controls.org/
https://epics-controls.org/
https://epics-controls.org/

36

Getting Started with EPICS

IOC Overview

Based on a presentation by :

E. Norum (APS)

37

IOC Overview

• What is an EPICS Input/Output Controller (IOC)

• How to create a new IOC application.

• How to build an IOC application.

• How to run an IOC application on various platforms.

• Console interaction with an IOC application (iocsh).

38

What is an Input/Output Controller?

• Some definitions from the first lectures:

• A computer running iocCore, a set of EPICS routines used to define process variables and implement
real-time control algorithms.

• iocCore uses database records to define process variables and their behavior.

39

What does an Input/Output Controller do?

• As its name implies, an IOC often performs input/output operations to attached hardware
devices.

• An IOC associates the values of EPICS process variables with the results of these input/output
operations.

• An IOC can perform sequencing operations, closed-loop control and other computations.

40

‘Host-based’ and ‘Target’ IOCs

• ‘Host-based’ IOC

• Runs in the same environment as which it was compiled

• ‘Native’ software development tools (compilers, linkers)

• Sometimes called a ‘Soft’ IOC

• IOC is a program like any other on the machine

• Possible to have many IOCs on a single machine

• ‘Target’ IOC

• Runs in a different environment than where compiled

• ‘Cross’ software development tools

• Linux, VxWorks, RTEMS

• IOC boots from some medium (usually network)

• IOC is the only program running on the machine

41

IOC Software Development Tools

• EPICS uses the GNU version of make

• Almost every directory from the {TOP} on down contains a Makefile

• Make recursively descends through the directory tree

• Determines what needs to be [re]built

• Invokes compilers and other tools as instructed in Makefile

• GNU C/C++ compilers or vendor compilers can be used

• No fancy ‘integrated development environment’ yet…

42

IOC Application Development Examples

• The following slides provide step-by-step examples of how to:

• Create, build, run the example IOC application on a 'host' machine (Linux)

• Each example begins with the use of makeBaseApp.pl

43

The makeBaseApp.pl Script

• Part of EPICS base distribution.

• Populates a new, or adds files to an existing, {TOP} area.

• Requires that your environment contain a valid EPICS_HOST_ARCH

• EPICS base contains scripts which can set this as part of your login sequence

• linux-x86(_64), darwin-ppc, solaris-sparc, win32-x86

• Creates different directory structures based on a selection of different templates.

• Commonly-used templates include

• ioc - Generic IOC application skeleton

• example - Example IOC application

44

Exercise 1

Create an example EPICS Application

45

Creating and initializing a new {TOP}

• Create a new directory and run makeBaseApp.pl from within that directory:

1. mkdir <dirName>

2. cd <dirName>

3. makeBaseApp.pl -t example ex1

• The template is specified with the -t argument

• The application name (ex1App) is specified with the argument ex1

(created directory gets "App" appended to this name)

46

{TOP} directory structure

• The makeBaseApp.pl creates the following directory structure in {TOP} (<dirName>):

• configure/ - Configuration files

• ex1App/ - Files associated with the ‘ex1App’ application

• Db/ - Databases, templates, substitutions

• src/ - Source code

• Every directory also contains a Makefile

47

{TOP}/configure files

• Some may be modified as needed

• CONFIG

• Specify make variables (e.g. to build for a particular target):

• CROSS_COMPILER_TARGET_ARCHS = vxWorks-68040

• RELEASE

• Specify location of other {TOP} areas used by applications in this {TOP} area.

• Others are part of the (complex!) build system and should be left alone.

48

Create a host-based IOC boot directory

• Run makeBaseApp.pl from the {TOP} directory

• -t example: to specify template

• -i: to show that IOC boot directory is to be created

• name of IOC

4. makeBaseApp.pl -i -t example ex1

49

{TOP} directory structure

• The command from the previous slide creates an additional directory in {TOP}:

• iocBoot/ - Directory containing per-IOC boot directories

• iocex1/ - Boot directory for ‘iocex1’ IOC

50

{TOP} directory structure

51

Exercise 2

Inspect EPICS database

52

Build the application

• Run the GNU make program

• make on Darwin, Linux, Windows

• gnumake on Solaris

• Or to clean things up completely

• make clean uninstall

53

Exercise 3

Compile EPICS application

54

{TOP} directory structure after running make

• These additional directories are now present in {TOP}

• bin/ - Directory containing per-architecture directories

• linux-x86_64/ - Object files and executables for this architecture

• lib/ - Directory containing per-architecture directories

• linux-x86_64/ - Object libraries for this architecture

• dbd/ - Database definition files

• db/ - Database files (record instances, templates)

• There may be other directories under bin/ and lib/.

55

IOC Startup

• IOCs read commands from a startup script

• Typically, st.cmd in the {TOP}/iocBoot/<iocname>/ directory

• IOCs read these scripts with the iocsh shell

• Command syntax can be similar but iocsh allows a more familiar form too.

• Script was created with the makeBaseApp.pl -i command.

• For a ‘real’ IOC you’d likely add commands to configure hardware modules, start sequence
programs, update log files, etc.

56

Example application startup script
1 #!../../bin/linux-x86_64/ex1

2

3 ## You may have to change ex1 to something else

4 ## everywhere it appears in this file

5

6 < envPaths

7

8 cd ${TOP}

9

10 ## Register all support components

11 dbLoadDatabase("dbd/ex1.dbd")

12 ex1_registerRecordDeviceDriver(pdbbase)

13

14 ## Load record instances

15 dbLoadRecords("db/dbExample1.db","user=epics")

16 dbLoadRecords("db/dbExample2.db","user=epics,no=1,scan=1 second")

17 dbLoadRecords("db/dbExample2.db","user=epics,no=2,scan=2 second")

18 dbLoadRecords("db/dbExample2.db","user=epics,no=3,scan=5 second")

19 dbLoadRecords("db/dbSubExample.db","user=epics")

20

21 cd ${TOP}/iocBoot/${IOC}

22 iocInit()

23

24 ## Start any sequence programs

25 #seq sncExample,"user=epics”

57

Example application startup script

1 #!../../bin/linux-x86_64/ex1

• This allows a host-based IOC application to be started by simply executing the st.cmd script.

• If you are running this on a different architecture, the linux-x86_64 will be that of the
architecture you are using.

• ex1 refers to the IOC name that you created with the ‘makeBaseApp.pl -i’ command. For our
example, it is ex1.

• Remaining lines beginning with a # character are comments.

58

Example application startup script
1 #!../../bin/linux-x86_64/ex1

2

3 ## You may have to change ex1 to something else

4 ## everywhere it appears in this file

5

6 < envPaths

7

8 cd ${TOP}

9

10 ## Register all support components

11 dbLoadDatabase("dbd/ex1.dbd")

12 ex1_registerRecordDeviceDriver(pdbbase)

13

14 ## Load record instances

15 dbLoadRecords("db/dbExample1.db","user=epics")

16 dbLoadRecords("db/dbExample2.db","user=epics,no=1,scan=1 second")

17 dbLoadRecords("db/dbExample2.db","user=epics,no=2,scan=2 second")

18 dbLoadRecords("db/dbExample2.db","user=epics,no=3,scan=5 second")

19 dbLoadRecords("db/dbSubExample.db","user=epics")

20

21 cd ${TOP}/iocBoot/${IOC}

22 iocInit()

23

24 ## Start any sequence programs

25 #seq sncExample,"user=epics”

59

Example application startup script

6 < envPaths

• The application reads commands from the envPaths file created by makeBaseApp -i and make

• The envPaths file contains commands to set up environment variables for the application:

• Architecture

• IOC name

• {TOP} directory

• {TOP} directory of each component named in configure/RELEASE

• These values can then be used by subsequent commands:

• epicsEnvSet(IOC,"iocex1")

• epicsEnvSet(TOP,"/home/$USER/ex1")

• epicsEnvSet(EPICS_BASE,"/opt/epics/base")

60

Example application startup script
1 #!../../bin/linux-x86_64/ex1

2

3 ## You may have to change ex1 to something else

4 ## everywhere it appears in this file

5

6 < envPaths

7

8 cd ${TOP}

9

10 ## Register all support components

11 dbLoadDatabase("dbd/ex1.dbd")

12 ex1_registerRecordDeviceDriver(pdbbase)

13

14 ## Load record instances

15 dbLoadRecords("db/dbExample1.db","user=epics")

16 dbLoadRecords("db/dbExample2.db","user=epics,no=1,scan=1 second")

17 dbLoadRecords("db/dbExample2.db","user=epics,no=2,scan=2 second")

18 dbLoadRecords("db/dbExample2.db","user=epics,no=3,scan=5 second")

19 dbLoadRecords("db/dbSubExample.db","user=epics")

20

21 cd ${TOP}/iocBoot/${IOC}

22 iocInit()

23

24 ## Start any sequence programs

25 #seq sncExample,"user=epics”

61

Example application startup script

8 cd ${TOP}

• The working directory is set to the value of the {TOP} environment variable (as set by the commands in envPaths).

• Allows use of relative path names in subsequent commands.

11 dbLoadDatabase("dbd/ex1.dbd")

• Loads the database definition file for this application.

• Describes record layout, menus, drivers.

12 ex1_registerRecordDeviceDriver(pdbbase)

• Registers the information read from the database definition files.

62

Example application startup script
1 #!../../bin/linux-x86_64/ex1

2

3 ## You may have to change ex1 to something else

4 ## everywhere it appears in this file

5

6 < envPaths

7

8 cd ${TOP}

9

10 ## Register all support components

11 dbLoadDatabase("dbd/ex1.dbd")

12 ex1_registerRecordDeviceDriver(pdbbase)

13

14 ## Load record instances

15 dbLoadRecords("db/dbExample1.db","user=epics")

16 dbLoadRecords("db/dbExample2.db","user=epics,no=1,scan=1 second")

17 dbLoadRecords("db/dbExample2.db","user=epics,no=2,scan=2 second")

18 dbLoadRecords("db/dbExample2.db","user=epics,no=3,scan=5 second")

19 dbLoadRecords("db/dbSubExample.db","user=epics")

20

21 cd ${TOP}/iocBoot/${IOC}

22 iocInit()

23

24 ## Start any sequence programs

25 #seq sncExample,"user=epics”

63

Example application startup script

15 dbLoadRecords("db/dbExample1.db","user=epics")

16 dbLoadRecords("db/dbExample2.db","user=epics, no=1, scan=1 second")

17 dbLoadRecords("db/dbExample2.db","user=epics, no=2, scan=2 second")

18 dbLoadRecords("db/dbExample2.db","user=epics, no=3, scan=5 second")

19 dbLoadRecords("db/dbSubExample.db","user=epics")

• Read the application database files

• These define the records which this IOC will maintain.

• A given file can be read more than once (with different macro definitions).

64

Example application startup script
1 #!../../bin/linux-x86_64/ex1

2

3 ## You may have to change ex1 to something else

4 ## everywhere it appears in this file

5

6 < envPaths

7

8 cd ${TOP}

9

10 ## Register all support components

11 dbLoadDatabase("dbd/ex1.dbd")

12 ex1_registerRecordDeviceDriver(pdbbase)

13

14 ## Load record instances

15 dbLoadRecords("db/dbExample1.db","user=epics")

16 dbLoadRecords("db/dbExample2.db","user=epics,no=1,scan=1 second")

17 dbLoadRecords("db/dbExample2.db","user=epics,no=2,scan=2 second")

18 dbLoadRecords("db/dbExample2.db","user=epics,no=3,scan=5 second")

19 dbLoadRecords("db/dbSubExample.db","user=epics")

20

21 cd ${TOP}/iocBoot/${IOC}

22 iocInit()

23

24 ## Start any sequence programs

25 #seq sncExample,"user=epics”

65

Example application startup script

21 cd ${TOP}/iocBoot/${IOC}

• The working directory is set to the per-IOC startup directory

22 iocInit()

• Activates everything

• After reading the last line of the st.cmd script the IOC continues reading commands from the
console

• Diagnostic commands

• Configuration changes

66

Exercise 4

Start an IOC for your application

67

Running a host-based IOC

• Change to IOC startup directory (the one containing the st.cmd script)

cd iocBoot/iocex1

• Run the IOC executable with the startup script as the only argument

../../bin/linux-x86/ex1 st.cmd

• The startup script commands will be displayed as they are read and executed
• When all the startup script commands are finished the iocsh will display an epics> prompt and wait for commands to be typed.

iocInit()

###

EPICS IOC CORE built on Jun 23 2004

EPICS R3.14.6 $R3-14-6$ $2004/05/28 19:27:47$

###

Starting iocInit

Start any sequence programs

#seq sncExample,"user=epics"

iocInit: All initialization complete

epics>

68

Some Useful iocsh Commands

• Display list of records maintained by this IOC:

epics> dbl

epics:aiExample

epics:aiExample1

epics:aiExample2

epics:aiExample3

epics:calcExample

epics:calcExample1

epics:calcExample2

epics:calcExample3

epics:compressExample

epics:subExample

epics:xxxExample

• Caution – some IOCs have many records.

69

Some Useful iocsh Commands

• Display a record:

epics> dbpr epics:aiExample

ASG: DESC: Analog input DISA: 0 DISP: 0

DISV: 1 NAME: epics:aiExample RVAL: 0

SEVR: MAJOR STAT: HIHI SVAL: 0 TPRO: 0

VAL: 9

epics> dbpr epics:aiExample

ASG: DESC: Analog input DISA: 0 DISP: 0

DISV: 1 NAME: epics:aiExample RVAL: 0

SEVR: MINOR STAT: LOW SVAL: 0 TPRO: 0

VAL: 4

• dbpr <recordname> 1 prints more fields

• dbpr <recordname> 2 prints even more fields, and so on

70

Some Useful iocsh Commands

• Show list of attached clients:

epics> casr

Channel Access Server V4.11

No clients connected.

• casr 1 prints more information

• casr 2 prints even more information

71

Some Useful iocsh Commands

• Do a ‘put’ to a field:

epics> dbpf epics:calcExample.SCAN "2 second"

DBR_STRING: 2 second

• Arguments with spaces must be enclosed in quotes

72

Some Useful iocsh Commands

• The help command, with no arguments, displays a list of all iocsh commands

• 90 or so, plus commands for additional drivers

• With arguments it displays usage information for each command listed:

epics> help dbl dbpr dbpf

dbl 'record type' fields

dbpr 'record name' 'interest level'

dbpf 'record name' value

73

Terminating a host-based IOC

• Type exit at the iocsh prompt.

• Type your ‘interrupt’ character (usually Ctrl-C).

• Kill the process from another terminal/window.

74

Command-Line Tools

• These are client-side tools.

• The tools we will cover are:

• caget – gets the value of one or more process variables

• caput – sets the value of one process variables

• camonitor – monitors the value changes of one or more process variables

• cainfo – gets information about one or more process variables

• All accept –h to display usage and options.

• NOTE: equivalent commands are pvget, pvput, pvmonitor

75

caget Example

• Get the values of two process variables:

caget S35DCCT:currentCC S:SRlifeTimeHrsCC

• Returns:

S35DCCT:currentCC 102.037

S:SRlifeTimeHrsCC 7.46514

76

caput Example

• Set the value of a process variable:

caput Xorbit:S1A:H1:CurrentAO 1.2

• Returns:

Old : Xorbit:S1A:H1:CurrentAO 0

New : Xorbit:S1A:H1:CurrentAO 1.2

77

camonitor Example

• Monitor two process variables:

camonitor evans:calc evans:bo01

• Returns:

evans:calc 1970-08-05 17:23:04.623245 1

evans:bo01 1970-08-05 17:23:04.623245 On

evans:calc 1970-08-05 17:23:05.123245 2

evans:bo01 1970-08-05 17:23:05.123245 Off

evans:calc 1970-08-05 17:23:05.623245 3

evans:calc 1970-08-05 17:23:06.123245 4

evans:calc 1970-08-05 17:23:06.623233 5

evans:calc 1970-08-05 17:23:07.123183 6

• Use Ctrl-C to stop monitoring.

78

cainfo Example

• Get information about a process variable:

cainfo S35DCCT:currentCC

• Returns:

State: connected

Host: ctlapps4l188:5064

Access: read, no write

Data type: DBR_DOUBLE (native: DBF_DOUBLE)

Element count: 1

79

Review

• IOC applications can be host-based or target-based.

• The makeBaseApp.pl script is used to create IOC application modules and IOC startup
directories.

• {TOP}/configure/RELEASE contents specify location of other {TOP} areas used by
this {TOP} area.

• {TOP}/iocBoot/<iocname>/st.cmd is the startup script for IOC applications.

• The EPICS build system requires the use of GNU make.

• The EPICS Application Developer’s Guide contains a wealth of information.

80

Getting started with EPICS

Database Concepts

Based on a presentation by :

A. Johnson (APS)

81

Contents

• Records

• Fields and field types

• Record Scanning

• Input and Output record types

• Links, link address types

• Connecting records together

• Protection mechanisms

• Alarms, deadbands, simulation and security

82

Database = Records + Fields + Links

• A control system using EPICS will contain one or more IOCs.

• Each IOC loads one or more Databases telling it what to do.

• A Database is a collection of Records of various types.

• A Record is an object with:

• A unique name

• A behavior defined by its record type (class)

• Controllable properties (fields)

• Optional associated hardware I/O (device support)

• Links to other records

83

Record Activity

• Records are active — they can do things:

• Get data from other records or from hardware

• Perform calculations

• Check values are in range & raise alarms

• Put data to other records or to hardware

• Activate or disable other records

• Wait for hardware signals (interrupts)

• What a record does depends upon its record type and the settings of its fields.

• No action occurs unless a record is processed.

84

How is a record implemented?

• A ‘C’ structure with both data storage and pointers to record type information.

• A record definition within a database provides:

• Record name

• The record’s type

• Values for each design field

• A record type provides:

• Definitions of all the fields

• Code which implements the record behavior

• New record types can be added to an application as needed.

85

A Graphical View of a Record

86

The IOC’s View

record(ao,"DemandTemp") {

field(DESC,"Temperature")

field(ASG,"")

field(SCAN,"Passive")

field(PINI,"NO")

field(PHAS,"0")

field(EVNT,"0")

field(DTYP,"VMIC 4100")

field(DISV,"1")

field(SDIS,"")

field(DISS,"NO_ALARM")

field(PRIO,"LOW")

field(FLNK,"")

field(OUT,"#C0 S0")

field(OROC,"0.0e+00")

field(DOL,"")

field(OMSL,"supervisory")

field(OIF,"Full")

field(PREC,"1")

field(LINR,"NO CONVERSION")

field(EGUF,"100")

field(EGUL,"0")

field(EGU,"Celsius")

field(DRVH,"100")

field(DRVL,"0")

field(HOPR,"80")

field(LOPR,"10")

field(HIHI,"0.0e+00")

field(LOLO,"0.0e+00")

field(HIGH,"0.0e+00")

field(LOW,"0.0e+00")

field(HHSV,"NO_ALARM")

field(LLSV,"NO_ALARM")

field(HSV,"NO_ALARM")

field(LSV,"NO_ALARM")

field(HYST,"0.0e+00")

field(ADEL,"0.0e+00")

field(MDEL,"0.0e+00")

field(SIOL,"")

field(SIML,"")

field(SIMS,"NO_ALARM")

field(IVOA,"Continue normally")

field(IVOV,"0.0e+00")

}

• The full .db file entry for an Analogue Output Record

This shows only the design fields, there are other fields which are used only at run-time

87

Fields are for...

• Defining
• What causes a record to process

• Where to get/put data from/to

• How to turn raw I/O data into a numeric engineering value

• Limits indicating when to report an alarm

• When to notify value changes to a client monitoring the record

• A Processing algorithm

• Anything else which needs to be set for each record of a given type

• Holding run-time data
• Input or output values

• Alarm status, severity and acknowledgements

• Processing timestamp

• Other data for internal use

88

Field Types

• Fields can contain

• Integers [1, 2, …]

• char, short or long
• signed or unsigned

• Floating-point numbers [0.1, 3.2, …]

• float or double
• Strings [“this is a string”]

• maximum useful length is 40 characters

• Menu choices

• select one from up to 16 strings
• stored as a short integer

• Links

• to other records in this or other IOCs
• to hardware signals (device support)
• provide a means of getting or putting a value

89

All Records Have These Fields

• Design fields

• NAME - 60 Character unique name (using >40 characters can cause problems)
• DESC - 40 Character description
• ASG - Access security group
• SCAN - Scan mechanism
• PHAS - Scan order (phase)
• PINI - Process at IOC initialization?
• PRIO - Scheduling priority
• SDIS - Scan disable input link
• DISV - Scan disable value
• DISS - Disabled severity
• FLNK - Forward link

• Run-time fields

• PROC - Force processing
• PACT - Process active
• STAT - Alarm status
• SEVR - Alarm severity
• TPRO - Trace processing
• UDF - Set if record value undefined
• TIME - Time when last processed

90

Other Interesting Fields

• Input/Output
• INP - Input link

• OUT - Output link

• DOL - Desired output location

• RVAL - Raw value

• Conversion
• EGU - Engineering unit string

• LINR - Unit conversion control

• EGUL - Low engineering value

• EGUF - High engineering value

• ESLO - Unit conversion slope

• EOFF - Unit conversion offset

• Limits
• HOPR - High operating range

• LOPR - Low operating range

• DRVH - Drive high

• DRVL - Drive low

• Calculus
• CALC - Calculation

• Alarms
• HIGH - High alarm limit

• LOW - Low alarm limit

• HIHI - HiHi alarm limit

• LOLO - LoLo alarm limit

• HSV - High alarm severity

• LSV - Low alarm severity

• HHSV - HiHi alarm severity

• LLSV - LoLo alarm severity

• HYST - Alarm deadband

• Monitors
• ADEL - Archive deadband

• MDEL - Monitor deadband

• Runtime data
• ORAW - Old raw value

• PVAL - Previous value

• ORBV - Old readback value

• LALM - Last Alarm Monitor Trigger Value

• ALST - Last Archiver Monitor Trigger Value

91

Record Scanning

• The SCAN field is a menu choice from:

• Periodic — 0.1 seconds .. 10 seconds

• I/O Interrupt (if device supports this)

• Soft event — EVNT field

• Passive (default)

• The number in the PHAS field allows the processing order to be set within a scan.

• Records with PHAS=0 are processed first.

• Then those with PHAS=1, PHAS=2 etc.

• Records with PINI=YES are processed once at start-up.

• PRIO field selects Low|Medium|High priority for Soft event and I/O Interrupts.

• A record is also processed whenever any value is written to its PROC field.

92

Exercise 5
EPICS Record Basics
(bullets 1, 2 and 3)

93

Periodically Scanned Analog Input

• Analogue Input “Temperature”

• Reads from the Xycom XY566 ADC Card 0
Signal 0

• Gets a new value every second

• Data is converted from ADC range to 0..120
Celsius

94

Interrupt Scanned Binary Input

• Binary Input “VentValve”

• Reads from Allen-Bradley TTL I/O Link 0,
Adaptor 0, Card 3, Signal 5

• Processed whenever value changes

• 0 = “Closed”, 1 = “Open”

• Major alarm when valve open

95

Passive Binary Output

• Binary Output “Solenoid”

• Controls Xycom XY220 Digital output Card
0 Signal 12

• Record is only processed by:

• Channel Access ‘put’ to a PP field (e.g. .VAL)

• Another record writes to this one using PP flag

• Forward Link from another record

• Another record reads from this one using PP
flag

96

Links

• A link is a type of field, and is one of:

• Input link

• Fetches data

• Output link

• Writes data

• Forward link

• Points to the record to be processed once this record finishes processing.

97

Input and Output links may be...

• Constant numeric value, e.g.:

• 0

• 3.1415926536

• 1.6e-19

• Hardware link

• A hardware I/O signal selector, the format of which depends on the device support layer

• Process Variable link — the name of a record, which at run-time is resolved into:

• Database link

• Named record is in this IOC

• Channel Access link

• Named record not found in this IOC

98

Device Support

• Records do not access hardware directly.

• The Device Support layer performs I/O operations on request.

• A particular device support provides I/O for a single record type.

• The DTYP field determines which device support to use.

• The device support selected determines the format of the link (INP or OUT field) containing
device address information.

• Adding new device support does not require change to the record software.

• Device support may call other software to do work for it (Driver Support).

99

Hardware Links

• VME_IO

• #Cn Sn @parm

• Card, Signal

• INST_IO

• @parm

• CAMAC_IO

• #Bn Cn Nn An Fn @parm

• Branch, Crate, Node, Address, Function

• AB_IO

• #Ln An Cn Sn @parm

• Or #Ln Pn Cn Sn Fn @parm

• Link, Adaptor, Card, Signal, Flag

• GPIB_IO

• #Ln An @parm

• Link, Address

• BITBUS_IO

• #Ln Nn Pn Sn @parm

• Link, Node, Port, Signal

• BBGPIB_IO

• #Ln Bn Gn @parm

• Link, Bitbus Address, GPIB Address

• VXI_IO

• #Vn Cn Sn @parm

• or #Vn Sn @parm

• Frame, Slot, Signal

100

Database Links

• These comprise:
• The name of a record in this IOC

• myDb:myRecord

• An optional field name
• .VAL default

• Process Passive flag
• NPP default, no processing action

• PP in case of INPUT links, request the target to process before fetching data,
in case of OUTPUT links, request the target to process after writing data

• Maximize Severity flag
• NMS default, no change in record severity

• MS maximize severity, propagate alarm severity from source to destination

• MSS maximize severity and status

• MSI maximize severity but only if invalid

• Example:
field(INP, “M1:current.RBV NPP MS“)

• Note: An input database link with PP set that is pointing to an asynchronous input record will not wait for the new value from that record.

101

Channel Access Links

• Specified like a database link

• Name specifies a record not found in this IOC

• Use Channel Access protocol to communicate with remote IOC

• May include a field name (default .VAL)

• PP Link flags are ignored:

• Input links are always NPP

• Output links follow PP attribute of destination field

• This behavior is identical to all other CA clients

• MS Link flags apply to Input links:

• Input links honors a given NMS (default) or MS flag

• Output links are always NMS

• Additional flags for CA links

• CA Forces a “local” link to use CA

• CP On input link, process this record on CA monitor event

• CPP Like CP but only process if SCAN is Process Passive

102

pvAccess Links

• Possible to link records over PVAccess

• Data and control flow between records

• Similar to CA links

• Links can be internal or external

• Pointing to records in the same IOC or a
different IOC

• Propagation of

• Record processing

• Alarm severity

• Linked record inherits alarm severity from
link source

• Data queue/buffer control

• Q, pipeline

record(longin, “<PV>") {field(INP, {pva:{pv:“<PV_name>",field:"", # may be a sub-fieldlocal:false,# Require local PVQ:4, # monitor queue depthpipeline:false, # require that server uses monitor flow control protocolproc:none, # Request record processing (side-effects).sevr:false, # Maximize severity.time:false, # set record time during getValuemonorder:0, # Order of record processing as a result of CP and CPPretry:false,# allow Put while disconnectedalways:false,# CP/CPP input link process even when .value field hasn't changeddefer:false # Defer put}})}

record(longin, “<PV>") {

field(INP, {pva:{

pv:“<PV_name>",

field:"", # may be a sub-field

local:false,# Require local PV

Q:4, # monitor queue depth

pipeline:false, # require that server uses monitor flow control protocol

proc:none, # Request record processing (side-effects).

sevr:false, # Maximize severity.

time:false, # set record time during getValue

monorder:0, # Order of record processing as a result of CP and CPP

retry:false,# allow Put while disconnected

always:false,# CP/CPP input link process even when .value field hasn't changed

defer:false # Defer put

}})

}

https://epics-base.github.io/pva2pva/qsrv_page.html#qsrv_link

103

Forward Links

• Usually a Database link, referring to a record in the same IOC.

• Forward linking via Channel Access is possible but must explicitly name the PROC field of the
remote record.

• No flags (PP, NMS etc.).

• Destination record is only processed if it has:

• SCAN = Passive

• Does not pass a value, just causes subsequent processing.

104

Exercise 5
EPICS Record Basics

(bullet 4)

105

Processing Chains

106

The PACT Field

• Every record has a Boolean run-time field called PACT (Process Active)

• PACT breaks loops of linked records

• It is set to ‘true’ early in the act of processing the record

• PACT is true whenever a link in that record is used to get/put a value

• PACT is set to false after record I/O and forward link processing are finished

• A PP link can never make a record process if it has PACT true

• Input links take the current value

• Output links just put their value

107

Processing Chains

PACT= 10 PACT= 10 PACT= 10

PACT= 1 PACT= 1 PACT= 1000

PACT= 1PACT= 1PACT= 10 0 0

108

What happens here?

PACT=

PACT=

PACT= PACT=01

01

01

01

109

Disable Processing

• It is useful to be able to stop an individual record from processing on some condition

• Before record-specific processing is called, a value is read through the SDIS input link into DISA

• If DISA=DISV, the record will not be processed

• A disabled record may be put into an alarm by giving the desired severity in the DISS field

• The FLNK of a disabled record is never triggered

110

Database Example

• Temp_Interlock and Flow_Interlock get their values from the hardware. If the interlock power is OFF,
both interlock records are disabled (their values do not change).

• How can we give the two interlock records an INVALID alarm severity when the Interlock Power is OFF?

• Are there any mistakes in the DB? SDIS field

111

How do records allocate CPU time?

• Several IOC tasks are used:

• callback (3 priorities) — I/O Interrupt

• scanEvent — Soft Event

• scanPeriod — Periodic

• A separate task is used for each scan period

• Faster scan rates are given a higher task priority (if supported by the IOC’s Operating System)

• Channel Access tasks use lower priority than record processing

• If a CPU spends all its time doing I/O and record processing, you may be unable to control or monitor
the IOC via the network

112

Alarms

• Every record has the fields

• SEVR Alarm Severity

• NONE, MINOR, MAJOR, INVALID

• STAT Alarm Status (reason)

• READ, WRITE, UDF, HIGH, LOW, STATE, COS, CALC, DISABLE, etc.

• Most numeric records check VAL against HIHI, HIGH, LOW and LOLO fields after the value has
been determined

• The HYST field prevents alarm chattering

• A separate severity can be set for each numeric limit (HHSV, HSV, LSV, LLSV)

• Discrete (binary) records can raise alarms on entering a particular state, or on a change of state
(COS)

113

Change notification:
Monitor deadbands

• Channel Access notifies clients which are monitoring a numeric record when

• VAL changes by more than the value in field:

• MDEL Value monitors

• ADEL Archive monitors

• Record’s Alarm Status changes

• HYST Alarm hysteresis

• Analogue Input record provides smoothing filter to reduce input noise (SMOO)

114

Breakpoint Tables

• Analogue Input and Output records can do non-linear
conversions from/to the raw hardware value

• Breakpoint tables interpolate values from a given table

• To use, set the record’s LINR field to the name of the
breakpoint table you want to use (e.g. typeJDegC)

• Example breakpoint table (in some loaded .dbd file)

breaktable(typeJDegC) {

0.000000 0.000000

299.268700 74.000000

660.752744 163.000000

1104.793671 274.000000

1702.338802 418.000000

2902.787322 703.000000

3427.599045 831.000000

...

}

0 2000 4000
0

250

500

750

Type J Thermocouple

Raw Input, ADC Units

E
n
g
in

e
e
ri

n
g
 V

a
lu

e
,

C
e
lc

iu
s

115

Simulation

• Input and output record types often allow simulation of hardware interfaces

• SIML Simulation mode link

• SIMM Simulation mode value

• SIOL Simulation input link

• SIMS Simulation alarm severity

• Before using its device support, a record reads SIMM through the SIML link

• If SIMM=YES, device support is ignored; record I/O uses the SIOL link instead

• An alarm severity can be set whenever simulating, given by the SIMS field.

116

Exercise 5
EPICS Record Basics
(bullets 5, 6 and 7)

117

Access Security

• A networked control system must have the ability to enforce security rules

• Who can do what from where, and when?

• In EPICS, security is enforced by the CA server (typically the IOC).

• A record is placed in the Access Security Group named in its ASG field

• DEFAULT is used if no group name is given

• Rules for each group determine whether a CA client can read or write to records in the group,
based on

• Client user ID

• Client IP address

• Access Security Level of the field addressed

• Values read from the database

118

• Security rules are loaded from an Access Security Configuration File, for example:

UAG(users) {user1, user2}

HAG(hosts) {host1, host2}

ASG(DEFAULT) {

RULE(1, READ)

RULE(1, WRITE) {

UAG(users)

HAG(hosts)

}

}

• If no security file is loaded, Security will be turned off and nothing refused

• For more details and the rule syntax, see Chapter 8 of the IOC Application Developers Guide.

Access Security Configuration File

119

EPICS 7 enhancement
Atomic access

• A simple semi-realistic example
• Rotating unit vector

• Polar vs. Cartesian coordinates

• Internally incrementing angle PV

• Cartesian coordinate PVs
• circle:X

• circle:Y

• Test on client side: use Pythagoras’ theorem on received values. Radius r should always be 1.

• Using CA: two independent channels.
• Correctness depends on simultaneity (“mostly” OK but not guaranteed)

• May appear to work if run on one host, or on a simple network.

• Using PVA: calculated and transported as a single unit.
• Correctness guaranteed, regardless of network or IOC load.

• Using info tags in the EPICS database, we can create group PVs

• Combine data from different records

• group PVs are served by the PVA server. Addressed by the group name.

120

EPICS 7 enhancement
Groups

• Use of info tags to configure groups

• Added to “V3” EPICS records; no other configuration
needed.

• Would be a no-op in a V3 IOC

• Use trigger keyword to process the group
(send monitors)

• Example on right: creates a group circle

• NTTable normative type (version 1.0)

• Value consists of two scalars, X and Y

record(calc, "circle:angle") {

field(PINI, "RUNNING") # bootstrap

field(INPA, "circle:angle NPP")

field(INPB, "circle:step NPP")

field(INPD, "360")

field(CALC, "C:=A+B;(C>=D)?C-D:C")

info(Q:group, {

"circle":{ +id:"epics:nt/NTTable:1.0",

"angle":{+type:"plain",

+channel:"VAL”}}

})

}

record(calc, "circle:x") {

field(INPA, "circle:angle NPP")

field(CALC, "cos(A*PI/180)")

field(TSEL, "circle:angle.TIME")

field(FLNK, "circle:y")

field(PREC, "3")

info(Q:group, {

"circle":{ "":{+type:"meta", +channel:"VAL"},

"value.X":{+type:"plain",

+channel:"VAL",

+trigger:”*”} }

})

}

record(calc, "circle:y") { <idem> } (except “trigger”

keyword)

Using pvget we see:
$ pvget circle

circle epics:nt/NTTable:1.0

structure record

structure _options

uint queueSize 0

boolean atomic true

double angle 16

alarm_t alarm

int severity 0

int status 0

string message NO_ALARM

time_t timeStamp 2019-06-24

16:08:17.546

long secondsPastEpoch 1561385297

int nanoseconds 546217000

int userTag 0

structure value

double X 0.961262

double Y 0.275637

121

Exercise 6

Processing Chains

122

Getting Started with EPICS

Record Types and Examples

Based on a presentation by :

T. Mooney (APS)

123

Scope

• This lecture:
• Existing record types and what they can do

• Record-type documentation

• Where to look for record types

• Related topics not covered in this lecture:
• What is a record?

• Database – Concepts and linking

• How do I connect a record instance to a device?

• set the link field (Database– Concepts and linking)

• How do I connect a record type to a device?

• Finding and deploying I/O support -- or, if not found...

• Writing device support

• How do I write a new record type?

• Writing Record Support

124

EPICS Record Types

• Where do record types come from?

• EPICS Base (<base>/modules/database/src/std/rec)

• General purpose record types

• No record-type specific operator displays or databases

• Documentation in EPICS Component Reference Manual

• EPICS collaboration

• General purpose, and application-specific, record types

• Some are supported for use by collaborators (some are NOT)

• Some come with record-type specific displays, databases

• Custom record types can be written by an EPICS developer and added to an EPICS application.

• Not in the scope of this lecture

125

Component Reference Manual

• Where is it?
• Software > EPICS Base > EPICS 7 > <release> > Other Links > IOC Component Reference Documentation

• https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html

• What is in it?
• Database Concepts (good review)

• Fields common to all records

• Fields common to many records

• Record Types – provides a description of the record processing routines for most of the record types in the
base.

• When would I use it?
• Skim through before writing any databases

• Read through before writing any records

• Otherwise, use as reference

https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html

126

Field Summary Type DCT Default Read Write CA PP

EGU Engineering Units STRING [16] Yes null Yes Yes No

HOPR High Operating Range FLOAT Yes 0 Yes Yes No

LOPR Low Operating Range FLOAT Yes 0 Yes Yes No

PREC Display Precision SHORT Yes 0 Yes Yes No

NAME Record Name STRING [29] Yes Null Yes No No

DESC Description STRING [29] Yes Null Yes Yes No

Component Reference Manual (cont.)

• Introduction to EPICS, Process Database Concepts

• Note special meaning of the words scan, process, address, link, and monitor

• Record references

• Descriptions of record fields, processing, and useful info for writing device support

• Contains lots of tables like the following:

127

• Where are they found?

• Soft-support list (search for record)

• https://epics-controls.org/resources-and-support/modules/soft-support/

• The tech-talk email list: tech-talk@aps.anl.gov

• The soft-support list contains entries like this (among entries for other kinds of soft support):

Class Name Description Contact Link

record epid Enhanced PID record Mark Rivers
CARS:epidRe

cord

record genSub Multi-I/O subroutine, handles arrays Andy Foster OSL:epics

...

record table Control an optical table Tim Mooney
APS:synApps/

optics

Collaboration Supported Records

https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
https://epics-controls.org/resources-and-support/modules/soft-support/
mailto:tech-talk@aps.anl.gov
mailto:tech-talk@aps.anl.gov
mailto:tech-talk@aps.anl.gov
mailto:Mark%20Rivers%20%3cRIVERS_at_cars3.uchicago.edu%3e
http://cars.uchicago.edu/software/epics/epidRecord.html
http://cars.uchicago.edu/software/epics/epidRecord.html
mailto:ajf_at_observatorysciences.co.uk
http://www.observatorysciences.co.uk/epics.htm
mailto:mooney_at_aps.anl.gov
http://www.aps.anl.gov/aod/bcda/synApps/optics/optics.html
http://www.aps.anl.gov/aod/bcda/synApps/optics/optics.html

128

Record Types

129

Input Records

• ai - Analog input [BASE]

• Read analog value, convert to engineering units, four alarm levels, simulation mode

• bi - Binary input [BASE]

• Single bit, two states, assign strings to each state, alarm on either state or change of state, simulation
mode

• mbbi - Multi-bit binary input [BASE]

• Multiple bit, 16 states, assign input value for each state, assign strings to each state, assign alarm level
to each state, simulation mode

• mbbiDirect – mbbi variant [BASE]

• Read an unsigned short and map each bit to a field (32 bi records in one)

130

Input Records (cont.)

• stringin - String input [BASE]

• 40 character (max) ascii string, simulation mode

• longin - Long integer input [BASE]

• Long integer, four alarm levels, simulation mode

• int64in – 64bit integer input [BASE]

• 64bit integer, four alarm levels, simulation mode

• waveform – array input [BASE]

• Configurable data type and array length

131

Output Records

• ao - Analog output [BASE]

• Write analog value, convert from engineering units, four alarm levels, closed_loop mode, drive limits,
output rate-of-change limit, INVALID alarm action, simulation mode

• bo - Binary output [BASE]

• Single bit, two states, assign strings to each state, alarm on either state or change of state, closed_loop
mode, momentary ‘HIGH’, INVALID alarm action, simulation mode

• longout [BASE]

• Write long integer value, four alarm levels, closed_loop mode, INVALID alarm action, simulation mode

• int64out [BASE]

• Write 64bit integer value, four alarm levels, closed_loop mode, INVALID alarm action, simulation mode

132

Output Records (cont.)

• mbbo - Multi-bit binary output [BASE]

• Multiple bit, 16 states, assign output value for each state, assign strings to each state, assign alarm level
to each state, closed_loop mode, INVALID alarm action, simulation mode

• mbboDirect - mbbo variant [BASE]

• 32 settable bit fields that get written as a short integer to the hardware, closed_loop mode, INVALID
alarm action, sim. mode

• motor [synApps]

• Controls stepper and servo motors

• stringout [BASE]

• Write a character string (40 max), closed_loop mode, INVALID alarm action, simulation mode

133

Algorithms/Control Records
Calc

• calc - run-time expression evaluation [BASE]

• 12 input links, user specified “calc expression” (algebraic, trig, relational, Boolean, Logical, “?”), four
alarm levels

• Sample expressions:

• 0 read: “<calc_record>.VAL = 0”

• A note ‘A’ refers to <calc_record>.A

• A+B

• sin(a)

• (A+B)<(C+D)?E:F+L+10

• calcout – calc variant [BASE]

• Conditional output link, separate output CALC expression (.OCAL), output delay, and output event

• Output-link options : Every Time, On Change, When Zero, When Non-zero, Transition To
Zero, Transition To Non-zero

134

Algorithms/Control Records
Calc
• sCalcout – calcout variant [synApps]

• Has both numeric fields (A,B,..L) and string fields (AA,BB,..LL)

• Supports both numeric and string expressions. E.g.,
• A+DBL(“value is 3.456”) -> 3.456

• printf(“SET:VOLT:%.2lf”, A+4) -> “SET:VOLT:5.00”

• Additional output-link option: “Never”

• transform – calc/seq variant [synApps]
• Like 16 calcout records (but outlinks are not conditional)

• Expressions read all variables but write to just one.

• Uses sCalcout record’s calculation engine

• Example expressions:
• A: 2 read: “<transform>.A = 2”

• B: A+1+C uses new value of ‘A’, old value of ‘C’

135

Algorithms/Control Records
Subroutine
• Goal: Connect subroutine (C code) to a record

• sub – Subroutine [BASE]

• 12 input links, user provided subroutine

• aSub – Array subroutine [BASE]

• Type of data could be selected

• Up to 21 inputs and outputs

• Fields:

• INAM - Initialization Subroutine Name

• SNAM - Subroutine Name

• SUBL - Subroutine Link [aSub]

• Processing

• Synchronous

• Asynchronous

136

Algorithms/Control Records
Subroutine (impl.)

• C subroutine example (synchronous).

long subInit(subRecord *psub) {

printf("subInit was called\n");

return(0);

}

long subProcess(subRecord *psub) {

psub->val++;

return(0);

}

137

Algorithms/Control Records
Processing

• dfanout – Data fanout [BASE]

• Writes a single value to eight output links

• fanout [BASE]

• Forward links to 16 other records.

• Selection mask

• sel - Select [BASE]

• 12 input links, four select options [specified, highest, lowest, median], four alarm levels

• seq - Sequence [BASE]

• 16 “Input link/Value/Output link” sets: [in-link, delay, value, out-link]

• Selection mask

138

Algorithms/Control Records
Analysis

• subArray [BASE]

• Extracts a sub-array from a waveform.

• compress [BASE]

• The data compression record is used to collect and compress data from arrays.

• Input link can be scalar or an array.

• Algorithms include N to 1 compression (highest, lowest, or average), circular buffer of scalar input.

• histogram [BASE]

• Accumulates histogram of the values of a scalar PV

139

Examples of Custom Records

• rf - RF Amplitude Measurements [ANL]

• Sample time, measurement in watts and db, waveform acquired through sweeping sample time

• bpm - Beam Position Monitor [ANL]

• Four voltage inputs, numerous calibration constants, X-Y-I outputs, waveforms for each input

• Many others that are site-specific

140

Examples

141

Database Example
Analog Input (AI)

• An analog input record

• Reading a voltage in Volts

• Operating range from 0 V to 100 V.

• Limit for a minor alarm is 80 V

• Limit for a major alarm is 90 V

There is a hysteresis associated with the alarm
limits and a deadband for reporting value
changes to monitors and archivers.

142

Database Example
Processing
• Slow Periodic Scan with Fast Change Response

• The ai record gets processed every 5 s AND when the associated ao record is changed. This provides an
immediate response to a change even though the desired scan rate is very slow. Changes to the power supply
settings are inhibited by the bo record, which could represent a Local/Remote switch.

143

Database Example
(Process Control)

• Temp_Interlock and Flow_Interlock get their values from the hardware. Both trigger a MAJOR alarm if
their value is 1. If the interlock power is OFF, both interlock records are disabled (their values do not
change).

• How can we give the two interlock records an INVALID alarm severity when the Interlock Power is off? Are
there any mistakes in the DB?

144

Database Example
Calc (“Rate-of-Change” of Input)

• INPA fetches data that is 1 s old because it does not request processing of the ai record. INPB
fetches current data because it requests the ai record to process. The subtraction of these two
values reflects the ‘rate of change’ (difference/sec) of the reading.

145

Database Example
Simple Control

• An ao record triggers every second and requests the correction calculation from the calc record.
The calc record requests the readback value from ai record, calculates the correction and the ao
finishes its processing and outputs the correction.

146

Database Example
Select

• The speeds of two fans are read from the hardware. The select record monitors their values
and sets its value to the highest speed.

147

Database Example
seq

• Users set motor speed and desired position with the ao records. When an actual move is desired, the
seq record fetches data from the ao records and sends it to the hardware. When the speed and
position are set, the move command is executed.

148

Database Example
Simulation Mode

• When in simulation mode, the ao record does not call device support and the ai record fetches
its input from the ao record.

149

Database Example
Automatic Shutdown on Logout

• If no CA monitor exists on the sub record (i.e. the operator logs out), MLIS will be NULL. The subroutine will then
set the VAL field to 0, causing the sequence record to process.

150

BPM Record

Left BPM Button

Right BPM
Button

Top BPM Button

Bottom BPM
Button

.INPL

.INPR

.INPT

.INPB

.XPOS

.YPOS

.INT

.VAL

- Average inputs

- Input history

- Standard deviation

...

Database Examples

• Quick Prototyping with Standard Records

• Custom Record Definition

151

RECORDS

Summary

152

Which record is right for …

• There are different ways to do things, but there are also some guidelines.

• “operator entered” soft parameters

• ao has DRVH, DRVL, OROC, closed loop

• mbbo provides enumerated options which can be converted to constants (DTYP = Raw Soft Channel)

• Normally one does not use input records for this purpose

• Multiple output actions

• seq record can have a different data source for each output link

• dfanout record “fans out” a single source to multiple links

• Different output actions based on an operator selection

• calcout records that conditionally process sequence records

• mbbo (DTYP = Raw Soft Channel) forward linked to a single sequence record in “masked” mode. Mask is
provided in MBBO for each state.

153

Creating Database Files

• Since the database file is a simple ASCII file, it can be generated by numerous applications… as
long as the syntax is correct.

• Text editor

• Script

• Relational Database Tool

• EPICS-aware Database Configuration Tools:

• VDCT

• An EPICS-aware tool will read the .dbd file (library provided) and provide menu selections of
enumerated fields. It may also detect database errors prior to the boot process

• A graphical tool can be helpful for complex databases.

154

Macro Substitutions

• EPICS features simple string substitution macros
• $(macro) can be used in .db files

• This allows db files to function as templates (e.g. use the same db file for all vacuum sectors, just with
different names (and possibly other parameters))

• Database with $(macro) cannot be loaded – all macros need to be expanded
• This can be done in st.cmd (as in Exercise 1) or by means of a separate substitutions file

• Creating a new EPICS application using example template will provide an example substitution file

• For more complex macro handling, there is an EPICS extension called msi.

155

Defining the Database

• How does an IOC know what record types and device support options are available?
• Record types, device support options, enumerated menus, and other configuration options are defined

in “database definition files” (.dbd)

• During the IOC booting process, one or more .dbd files are loaded

• .dbd files are created on the workstation to include the desired information for that IOC.

• How does an IOC know about record instances (the user’s database) ?
• Record instances are describe in “database files” (.db)

• During the IOC booting process, one or more .db files are loaded

• .db files are created on the workstation to include the desired information for that IOC.

156

Database Definition
File Formats

• Typical content of a database definition file (.dbd)
menu(menuPriority) {

choice(menuPriorityLOW, "LOW")

choice(menuPriorityMEDIUM, "MEDIUM")

choice(menuPriorityHIGH, "HIGH")

}

menu(menuScan) {

choice(menuScanPassive, "Passive")

choice(menuScanEvent, "Event")

choice(menuScanI_O_Intr, "I/O Intr")

choice(menuScan10_second, "10 second")

choice(menuScan5_second, "5 second")

choice(menuScan2_second, "2 second")

choice(menuScan1_second, "1 second")

choice(menuScan_5_second, ".5 second")

choice(menuScan_2_second, ".2 second")

choice(menuScan_1_second, ".1 second")

}

device(ai,CONSTANT,devAiSoftRaw,

"Raw Soft Channel")

device(ai,BITBUS_IO,devAiIObug,

"Bitbus Device")

device(ao,CONSTANT,devAoSoftRaw,

"Raw Soft Channel")

device(ao,VME_IO,devAoAt5Vxi,

"VXI-AT5-AO")

device(bi,VME_IO,devBiAvme9440,

"AVME9440 I")

device(bi,AB_IO,devBiAb,

"AB-Binary Input")

driver(drvVxi)

driver(drvMxi)

driver(drvGpib)

driver(drvBitBus)

157

• Typical content of database definition file (.dbd):

menu(scalerCNT)

{

choice(scalerCNT_Done,"Done")

choice(scalerCNT_Count,"Count“)

}

…

field(CNT,DBF_MENU)

{

prompt("Count")

special(SPC_MOD)

menu(scalerCNT)

pp(TRUE)

interest(1)

}

device(ao,CONSTANT,devAoSoftRaw,

"Raw Soft Channel")

driver(drvVxi)

recordtype(ai)

{

include "dbCommon.dbd"

field(VAL,DBF_DOUBLE)

{

prompt("Current EGU Value")

promptgroup(GUI_INPUTS)

asl(ASL0)

pp(TRUE)

}

…

field(PREC,DBF_SHORT)

{

prompt("Display Precision")

promptgroup(GUI_DISPLAY)

interest(1)

}

}

Database Definition
File Formats

158

record(calc,"$(user):rampM") {

field(CALC,"A>6.27?0:A+.1")

field(SCAN,"1 second")

field(INPA,"$(user):rampM.VAL NPP NMS")

}

record(calc,"$(user):cathodeTempM") {

field(DESC,"Measured Temp")

field(SCAN,"1 second")

field(CALC,"C+(A*7)+(SIN(B)*3.5)")

field(INPA,"$(user):cathodeCurrentC.OVAL NPP NMS")

field(INPB,"$(user):rampM.VAL NPP NMS")

field(INPC,"70")

field(EGU,"degF")

field(PREC,"1")

field(HOPR,"200")

field(LOPR,"")

field(HIHI,"180")

field(LOLO,"130")

field(HIGH,"160")

field(LOW,"140")

field(HHSV,"MAJOR")

field(HSV,"MINOR")

field(LLSV,"MAJOR")

field(LSV,"MINOR")

}

Database File Formats

• A typical database file (.db)

159

dbLoadDatabase("../../dbd/linacApp.dbd")

dbLoadRecords("../../db/xxLinacSim.db","user=studnt1")

iocInit /* starts ioc software */

Loading Database Files into the IOC

• Part of a typical startup script (st.cmd)

• One or more database definition files (.dbd) must be loaded first.

• Any record type specified in the database files must have been defined in the definition file

• Macros (variables) within the database files (e.g. $(user)) can be specified at boot time. This
allows the same database to be loaded with different names or channel assignments.

160

Exercise 7

A Chiller Application

161

Getting Started with EPICS

SNL – State Notation Language

Based on a presentation by :

Andrew Johnson (APS)

162

Outline

• What is State Notation Language (SNL)

• When to use it

• Where it fits in the EPICS toolkit

• Components of a state notation program

• Some notes on the Sequencer runtime

• Building, running and debugging a state notation program

• Additional Features

• This talk does not cover all the features of SNL and the sequencer. Consult the manual for more
information:

• https://github.com/epics-modules/sequencer/

163

SNL and the Sequencer

• The sequencer runs programs written in State Notation Language (SNL)

• SNL is a ‘C’ like language to facilitate programming of sequential operations

• Fast execution - compiled code

• Programming interface to extend EPICS in the real-time environment

• Common uses

• Provide automated start-up sequences like vacuum or RF where subsystems need coordination

• Provide fault recovery or transition to a safe state

• Provide automatic calibration of equipment

164

1-s1;5
PAR K

1

2
3 4

9

10

11

5

6

7

8

12

13

14

15

16

17
Initia lis ing

Parked
M isaligned

S topped

M 1STATE = O TH ER / M 1STATE = N O T_D O W N & EXTEN D ED /

M 1STATE = D O W N & C EN TR ED & R ETR AC TED /

U N PAR K_C M D /
R EJEC T_C M D

PAR K_C M D /

Fault
M 1STATE = R ETR AC TED & N O T_D O W N /

R ais ing

D eflating

D epressuris ing

Pos t-Parked

M anual-M ode

PR E-PAR K_C H EC KS = PASS /
PSS = O FF

;R ETR AC T_AXIAL_SU PPO R TS

PAR K_C M D /
PSS = O N

;M O VE_TO _PR E-PAR K

PO ST-PAR K_C H EC KS = FA IL /
U N PAR K_ALAR M

PR E-PAR K_C H EC KS = FA IL /
PAR K_ALAR M

PAR K-C M D /
PSS = O N

;AO S = O FF

;M O VE_TO _PR E-PAR K

U N PAR K_C M D /
R EJEC T_C M D

PAR K_C M D /
PSS = O N

;M O VE_TO _PR E_PAR K

O perating

U N PAR K_C M D /
PSS = O N

;IN FLATE_SEALS ;

U N PAR K_C M D /
M O VE_TO _N O P ;
IN FLATE_SEALS ;

R ealigning

PO ST-PAR K_C H EC KS = PASS /
PSS = O N ;
M O VE_TO _N O P ;
IN FLATE_SEALS ;

Inflating

P ressuris ing

P re-Parked

Low ering

SEALS = IN FLATED /
APSS = O N

APSS = PESSU R ISED /
AO S = O N ;PAR K-C M D /

AO S = O FF

;M O VE_TO _PR E-PAR K

APSS = D EPR ESSU R ISED /
D EFLATE_SEALS

SEALS = D EFLATED /

IN _PR E-PAR K_PO SN /

IN _PO ST-PAR K_PO SN /

U N PAR K_C M D /
PSS = O N ;
M O VE_TO _PO ST-PAR K

M 1STATE = D O W N & C EN TR ED & R ETR AC TED /

IN TER LO C K_R XD /
STO P_SU PPO R TS

Interlocked IN TER LO C K_R EM O VED /

PSS_O N _C M D /
PSS =

O N

PSS_O FF_C M D /
PSS =

O FF

Photograph courtesy of the Gemini Telescopes project

When to use the sequencer

• For sequencing complex events

• e.g. parking and unparking a telescope mirror

165

Channel Access

LAN

Device Support

I/O Hardware

IOC

Database Sequencer

Where’s the Sequencer?

• The major software components of an IOC (IOC Core)

166

The Best Place for the Sequencer

• Sequencer can run either on an IOC or as a standalone
program on a workstation

• Traditionally, sequencers run on the IOC

• Locating them within the IOC they control makes them
easier to manage

• Running them on a workstation can make testing and
debugging easier

• On a workstation, SNL provides an easy way to write
simple CA client programs

167

State A

State B

Event

Action

Transition

A to B

SNL implements State Machines

168

Start

Low vacuum

High vacuum

pressure > 5.1 uTorr

Close the valve

pressure < 4.9 uTorr

Open the valve

SM Example

169

Some Definitions

• SNL : State Notation Language

• SNC : State Notation Compiler

• Sequencer : The tool that executes the compiled SNL code

• Program : A complete SNL application consisting of declarations and one or more state sets

• State Set : A set of states that make a complete finite state machine

• State : A particular mode of the state set in which it remains until one of its transition conditions is
evaluated to be TRUE

170

SNL: General Structure and Syntax

program program_name

declarations

ss state_set_name {

state state_name {

entry {

entry action statements

}

when (event) {

action statements

} state next_state_name

when (event) {

…

} state next_state_name

exit{

exit action statements

}

}

state state_name {

…

}

}

program name A program may contain multiple state sets. The program
name is used as a handle to the sequencer
manager for state programs.

ss name { A state set becomes a task.
state name { A state is an area where the task waits for events. The

related task waits until one of the events occurs and then
checks to see which it should execute. The first state
defined in a state set is the initial state.

option flag; A state specific option
when (event) { Defines the events for which this state waits.
} state next Specifies the following state after the actions complete.
entry {actions} Actions to do on entry to this state from another state.

With option -e; these actions will trigger even if it re-
enters from the same state.

exit {actions} Actions to do before exiting this state to another state.
With option -x; these actions will trigger even if it exits
to the same state.

171

Declarations – Variables

• Appear before a state set and have a scope of the entire program.

• Scalar variables
int var_name;

short var_name;

long var_name;

char var_name;

float var_name;

double var_name;

string var_name; /* 40 characters */

• Array variables: 1 or 2 dimensions, no strings
int var_name[num_elements];

short var_name[num_elements];

long var_name[num_elements];

char var_name[num_elements];

float var_name[num_elements];

double var_name[num_elements];

172

Declarations – Assignments

• Assignment connects a variable to a channel access PV name
float pressure;

assign pressure to “CouplerPressureRB1”;

double pressures[3];

assign pressures to {“CouplerPressureRB1”, ”CouplerPressureRB2”, ” CouplerPressureRB3”};

• To use these channels in when clauses, they must be monitored
monitor pressure;

monitor pressures;

• Use preprocessor macros to aid readability:
#define varMon(t,n,c) t n; assign n to c; monitor n;

varMon(float, pressure, “CouplerPressureRB1”)

173

Declarations – Event Flags

• Event flags are used to communicate between state sets, or to receive explicit event notifications
from Channel Access

• Declare like this:

evflag event_flag_name;

• An event flag can be synchronized with a monitored variable

sync var_name event_flag_name;

• The flag will then be set when a monitor notification arrives

evflag flag_monitor;

sync pressure flag_monitor;

174

Events

• Event: The condition on which actions associated with a when are run and a state
transition is made.

• Possible events:

• Change in value of a variable that is being monitored:

when (achan < 10.0)

• A timer event (not a task delay!):

when (delay(1.5))

• The delay time is in seconds.

• A delay is normally reset whenever the state containing it is exited.

• Use the state specific option -t; to stop it from being reset when transitioning to the same state.

175

Possible Events (continued)

• The state of an event flag:

when (efTestAndClear(myflag))

when (efTest(myflag))

• efTest() does not clear the flag. efClear() must be called sometime later to avoid an infinite loop.

• If the flag is synced to a monitored variable, it will be set when the channel sends a value update

• The event flag can also be set by any state set in the program using efSet(event_flag_name)

• Any change in the channel access connection status:

when (pvConnectCount() < pvChannelCount())

when (pvConnected(mychan))

176

Action Statements

• Built-in action function, e.g. :

pvPut(var_name);

pvGet(var_name);

efSet(event_flag_name);

efClear(event_flag_name);

• Almost any valid C statement

• switch() is not implemented and code using it must be escaped.

• %% escapes one line of C code

• %{

escape any number of lines of C code

}%

177

pressure > .0000051

RoughPump on
CryoPump off

Valve closed

pressure <= .0000049

RoughPump off
CryoPump on

Valve open

pressure <= .0000049

RoughPump off
CryoPump on

Valve open

pressure > .0000051

RoughPump on
CryoPump off

Valve closed

10 minutes

RoughPump off
CryoPump off

Valve closed

Initial State

Fault

High VacuumLow Vacuum

Example – State Definitions and Transitions

178

Example – Declarations and State Transitions (actions omitted)

double pressure;

assign pressure to

“Tank1Coupler1PressureRB”;

monitor pressure;

short RoughPump;

assign RoughPump to

“Tank1Coupler1RoughPump”;

short CryoPump;

assign CryoPump to “Tank1Coupler1CryoPump”;

short Valve;

assign Valve to

“Tank1Coupler1IsolationValve”;

string CurrentState;

assign CurrentState to

“Tank1Coupler1VacuumState”;

program vacuum_control

ss coupler_control

{

state init{

when (pressure > .0000051){

} state low_vacuum

when (pressure <= .0000049){

} state high_vacuum

}

state high_vacuum{

when (pressure > .0000051){

} state low_vacuum

}

state low_vacuum{

when (pressure <= .0000049){

} state high_vacuum

when (delay(600.0)){

} state fault

}

state fault {

}

}

179

Example – init state and low_vacuum state

state init {

entry {

strcpy(CurrentState,”Init”);

pvPut(CurrentState);

}

when (pressure > .0000051){

RoughPump = 1;

pvPut(RoughPump);

CryoPump = 0;

pvPut(CryoPump);

Valve = 0;

pvPut(Valve);

} state low_vacuum

when (pressure <= .0000049){

RoughPump = 0;

pvPut(RoughPump);

CryoPump = 1;

pvPut(CryoPump);

Valve = 1;

pvPut(Valve);

} state high_vacuum

}

state low_vacuum{

entry {

strcpy(CurrentState,”Low Vacuum”);

pvPut(CurrentState);

}

when (pressure <= .0000049){

RoughPump = 0;

pvPut(RoughPump);

CryoPump = 1;

pvPut(CryoPump);

Valve = 1;

pvPut(Valve);

} state high_vacuum

when (delay(600.0)){

} state fault

}

180

Example – high_vacuum state and fault state

state high_vacuum{

entry {

strcpy(CurrentState,”High Vacuum”);

pvPut(CurrentState);

}

when (pressure > .0000051){

RoughPump = 1;

pvPut(RoughPump);

CryoPump = 0;

pvPut(CryoPump);

Valve = 0;

pvPut(Valve);

} state low_vacuum

}

state fault{

entry{

strcpy(CurrentState,”Vacuum Fault”);

pvPut(CurrentState);

}

}

181

Building an SNL program

• Use editor to build the source file. File name must end with.st or .stt,
e.g. example.st

• make automates these steps:
• Runs the C preprocessor on .st files, but not on .stt files.

• Compiles the state program with SNC to produce C code:

snc example.st -> example.c

• Compiles the resulting C code with the C compiler:

cc example.c -> example.o

• The object file example.o becomes part of the application library, ready to be linked into an IOC
binary.

• The executable file example can be created instead.

182

Run Time Sequencer

• The sequencer executes the state program

• It is implemented as an event-driven application; no polling is needed

• Each state set becomes an operating system thread

• The sequencer manages connections to database channels through Channel Access

• It provides support for channel access get, put, and monitor operations

• It supports asynchronous execution of delays, event flag, pv put and pv get functions

• Only one copy of the sequencer code is required to run multiple programs
options +r; // use macro

• Commands are provided to display information about the state programs currently executing

183

Executing a State Program

• From an IOC console

seq vacuum_control

• To stop the program

seqStop vacuum_control

184

Debugging

• Use the sequencer's query commands:

seqShow

• displays information on all running state programs

seqShow vacuum_control

• displays detailed information on program

seqChanShow vacuum_control

• displays information on all channels

seqChanShow vacuum_control,”-”

• displays information on all disconnected channels

185

Debugging (continued)

• Use printf functions to print to the console

printf("Here I am in state xyz \n");

• Put strings to pvs
sprintf(seqMsg1, "Here I am in state xyz");

pvPut(seqMsg1);

• Reload and restart (if running independently of IOC)
seqStop vacuum_control

• ... edit, recompile ...

• seq vacuum_control

186

epics> seqShow

Program Name Thread ID Thread Name SS Name

stabilizer ede78 stabilizer stabilizerSS1

beamTrajectory db360 beamTrajectory bpmTrajectorySS

autoControl ed620 autoControl autoCtlSS

Debugging – seqShow

187

epics> seqShow stabilizer

State Program: "stabilizer"

initial thread id = ede78

thread priority = 50

number of state sets = 1

number of syncQ queues = 0

number of channels = 3

number of channels assigned = 3

number of channels connected = 3

options: async=0, debug=0, newef=1, reent=0, conn=1, main=0

State Set: "stabilizerSS1"

thread name = stabilizer; thread id = 974456 = 0xede78

First state = "init"

Current state = "waitForEnable"

Previous state = "init"

Elapsed time since state was entered = 88.8 seconds

Debugging – seqShow

188

epics> seqChanShow stabilizer

State Program: "stabilizer"

Number of channels=3

#1 of 3:

Channel name: "stabilizerC"

Unexpanded (assigned) name: "stabilizerC"

Variable name: "enableButton"

address = 154120 = 0x25a08

type = short

count = 1

Value = 0

Monitor flag = 1

Monitored

Assigned

Connected

Get not completed or no get issued

Put not completed or no put issued

Status = 17

Severity = 3

Message =

Time stamp = <undefined>

Next? (skip count)

Debugging – seqChanShow

189

Additional Features

• Connection management:
when (pvConnectCount() != pvChannelCount())

when (pvConnected(Vin))

• Macros:
assign Vout to "{unit}:OutputV";

• must use the +r compiler options for this if more than one copy of the sequence is running on the same IOC

seq example, "unit=HV01"

• Some common SNC program options:
• +r make program reentrant (default is -r)

• -c don't wait for all channel connections (default is +c)

• +a asynchronous pvGet() (default is -a)

• -w don't print compiler warnings (default is +w)

program dynamic

option -c; /* don't wait for db connections */

190

Additional Features (continued)

• Access to channel alarm status and severity:

pvStatus(var_name)

pvSeverity(var_name)

• Queued monitors save CA monitor events in a queue in the order they come in, rather than
discarding older values when the program is busy

syncQ var_name to event_flag_name [queue_length]

pvGetQ(var_name)

• removes oldest value from variables monitor queue. Remains true until queue is empty.

pvFreeQ(var_name)

191

Advantages of SNL

• Can implement complicated algorithms

• Can stop, reload, restart a sequence program without rebooting

• Interact with the operator through string records and mbbo records

• C code can be embedded as part of the sequence

• All Channel Access details are taken care of

• File access can be implemented as part of the sequence

192

Getting Started with EPICS

Device Support

193

Writing Device Support – Outline

• Introduction

• What this for?

• What is ‘Device Support’?

• The .dbd file entry

• The driver DSET

• Device addresses

• Support routines

• Example

• Asynchronous processing

• Using interrupts

• Asynchronous input/output

• Callbacks

194

Device Integration Task

• Steps

• Use Case collection

• Requirements specification

• Design

• Implementation

• Verification

195

Writing Device Support – Scope

• An overview of the concepts associated with writing EPICS Device Support routines.

• Examples show the “stone knives and bearskins” approach.

• The ASYN package provides a framework which makes writing device support much easier.

• The concepts presented here still apply.

196

Goal

197

LAN

I/O Hardware

IOC

Database Sequencer

Device Support

Channel Access

Inside the IOC

• The major software components of an IOC (IOC Core)

198

EPICS Databases – What are they for?

• Interface to process instrumentation

• Distribute processing

• Provide external access to all process information

• Use common, proven, objects (records) to collect,
process and distribute data

• Provide a common toolkit for creating applications

199

How is a Record implemented?

• A ‘C’ structure with both data storage and pointers to record type information

• A record definition within a database provides
• Record name

• The record’s type

• Values for each design field

• A record type provides
• Definitions of all the fields

• Code which implements the record behavior

• New record types can be added to an application as needed
• Check EPICS example application (xxxRecord)

200

Device support diagram

201

Specific record implementation

myWFRecord
adc1:ai:ch15:wf

DTYP=myWFSupp

INP=#adc1 ai15

dbd
myWFRecord

C
myWFRecord

Behaviour

myWFRecord
adc1:ai:ch0:wf

DTYP=myWFSupp
INP=#adc1 ai0

Overhead

202

What is ‘Device Support’?

• Interface between record and hardware

• A set of routines for record support to call

• The record type determines the required set of routines

• These routines have full read/write access to any record field

• Determines synchronous/asynchronous nature of record

• Performs record I/O

• Provides interrupt handling mechanism

203

Device Support Architecture

ai
adc1:ai:ch0:lst

DTYP=myAISupp
INP=#adc1 ai0

myAISupp

ai
adc1:ai:ch15:lst

DTYP=myAISupp
INP=#adc1 ai15

204

Why use device support?

• Could instead make a different record type for each hardware interface, with fields to allow full
control over the provided facilities.

• A separate device support level provides several advantages:

• There is no needs for USERs learn a new record type for each type of device

• Increases modularity

• I/O hardware changes are less disruptive

• Device support is simpler than record support

• Hardware interface code is isolated from record API

• Custom records are available if really needed.

• By which I mean “really, really, really needed!”

• Existing record types are sufficient for most applications.

205

Where to look for help?

https://epics.anl.gov/base/R3-16/2-docs/AppDevGuide/AppDevGuide.html

206

EPICS
Advanced part

Asyn Driver

207

AsynDriver on the Web
https://epics-modules.github.io/asyn/

208

Goal

• Card

• Card parameters

• Channel groups

• Channels

• Range
• Offset
• Gain
• ???

• Triggers

209

LAN

I/O Hardware

IOC

Database Sequencer

Device Support

Chanel Access

Inside an IOC

• The major software components of an IOC (IOC Core)

210

Device Support Architecture

ai
adc1:ai:ch0:lst

DTYP=myAISupp
INP=#adc1 ai0

myAISupp

ai
adc1:ai:ch15:lst

DTYP=myAISupp
INP=#adc1 ai15

Overhead

waveform
adc1:ai:ch0:wf

DTYP=myWFSupp
INP=#adc1 ai0

waveform
adc1:ai:ch15:wf

DTYP=myWFSupp

INP=#adc1 ai15

211

Device Support Approach

• Device state management

• Device parameters

• Channel parameters

• Each required data type (interface) must be implemented

• Asynchronous processing / Interrupts

212

LAN

I/O Hardware

IOC

Database Sequencer

Device Support

Chanel Access

ASYN Definition

• The major software components of an IOC (IOC Core)

213

waveform
adc1:ai:ch15:wf

DTYP=asynFloat64Array

INP=@asyn() aVal

ai
adc1:ai:ch15:lst

DTYP=asynFloat64
INP=@asyn() sVal

waveform
adc1:ai:ch0:wf

DTYP=asynFloat64Array
INP=asyn() aVal

ai
adc1:ai:ch0:lst

DTYP=asynFloat64
INP=@asyn() sVal

DB

Sp
e

ci
fi

c
d

e
vi

ce
 s

u
p

p
o

rt

Device Support Using Asyn

214

Why is this so cool?

• Handles complex stuff that is common

• Write/Read operations

• Asynchronous processing/Interrupts

• Multiplicity

• Simplify writing of drivers, prevents bad design

• No need for EPICS device support (most cases)

• C/C++ Interfaces

215

Asyn Architecture

• Asyn manager has access to asyn port driver

ASYN GENERIC DEVICE SUP.

ASYN MANAGER

CUSTOM DEVICE SUP.

PORT DRIVER PORT DRIVER

ASYN FRAMEWORK

...

216

Asyn Architecture (Cont.)

Device support (or SNL code, another
driver, or non-EPICS software)

device device

Port (named object)

Port driver

addr=0 addr=1

Interfaces (named; pure
virtual functions)

asynCommon (connect,
report, …)

asynOctet (write, read,
setInputEos,…)

217

Generic Device Support

• asyn includes generic device support for many standard EPICS records and standard asyn interfaces

• Eliminates need to write device support in many cases. New hardware can be supported by writing
just a driver.

• Examples:
asynInt32

• ao, ai, mbbo, mbbi, longout, longin

asynInt32Average

• ai

asynUInt32Digital, asynUInt32DigitalInterrupt

• bo, bi, mbbo, mbbi

asynFloat64

• ai, ao

asynOctet

• stringin, stringout, waveform

218

How is it done?

device(ai, INST_IO, asynAiInt32, "asynInt32")

device(ai, INST_IO, asynAiInt32Average, "asynInt32Average")

device(ao, INST_IO, asynAoInt32, "asynInt32")

device(bi, INST_IO, asynBiInt32, "asynInt32")

device(bo, INST_IO, asynBoInt32, "asynInt32")

device(mbbi, INST_IO, asynMbbiInt32, "asynInt32")

device(mbbo, INST_IO, asynMbboInt32, "asynInt32")

device(longin, INST_IO, asynLiInt32, "asynInt32")

device(longout, INST_IO, asynLoInt32, "asynInt32")

…

219

Record Configuration

record (longin, "$(app)-LONGIN-MAX-INT32")

{

field(DTYP, "asynInt32")

field(INP, "@asyn(S0,1) getMaxInt32")

field(PINI, "YES")

}

Reason which
defines handler

behavior

Asyn Interface
which is used to
handle this PV

(Port name, address)

Port name configured in
st.cmd.

220

Synchronous Flow

• Sometimes blocking is desired

• We don't write extra stuff for blocking support

221

Synchronous Methods

• Read
asynStatus (*read) (

asynUser *pasynUser,

epicsXXX *pvalue,

size_t nelem,

size_t *nIn,

double timeout);

• Write
asynStatus (*write) (

asynUser *pasynUser,

epicsXXX *pvalue,

size_t nelem,

double timeout);

asynUser - is an interface between generic device support and specific driver. It is managed by asynManager.

222

Asynchronous Flow

• An asynUser is the means by which asynManager manages multiple requests

• An asynUser should be created for each “atomic” access to low level driver

223

Support for Interrupts

• Interfaces with interrupt callback support: asynInt32, asynInt32Array,
asynUInt32Digital, asynFloat64 and asynFloat64Array

• registerInterruptUser(…,userFunction, userPrivate, …)

• Driver will call userFunction(userPrivate, pasynUser, data) whenever an interrupt occurs

• Callback will not be at interrupt level, so callback is not restricted in what it can do

• Callbacks can be used by device support, other drivers, etc.

224

Adding ASYN: Application Conf.

• Register asyn in the config file (config/RELEASE)

ASYN=$(EPICS_BASE)/../modules/asyn

225

Adding ASYN: DB Configuration

• DBD:

include "asyn.dbd"

• Record Configuration:

• DTYP

field(DTYP,"asynXXX")

• INP/OUT

field(INP,"@asyn(portName, addr, timeout) reason")

• or

field(INP,"@asynMask(portName, addr, mask, timeout) reason")

226

ASYN Port Implementation

• C version

• Define/implement common ASYN interfaces

asynCommon

asynDrvUser

• Define/implement device support interfaces

asynInt32

• …

• C++ version

• Extend asynPortDriver class

• No need to define separate interfaces everything already defined

• Provide asynPort initialization function.

227

ASYN Port Implementation (cont.)

• Define supported reasons

asynUser.reason

• Register interrupt callback functions

• For SCAN = I/O Interrupt PVs

228

Existing Port Drivers

229

EPICS
Advanced part

Stream Device

230

Overview
• What is Stream Device?

• Architecture

• Build Configuration

• Protocol Files

• Features

• Example Protocol File

• Conclusion

231

What is StreamDevice?

• EPICS module used to define string-based communication protocols between EPICS records and
devices

• E.g. Message sent: V?; Message received: V=2.1

• Based on AsynDriver, has all of its advantages:

• Thread handling

• Proper resource locking

• Queueing (by priority)

• But yet simple configuration, no programming required

• Based on plain text protocol files

• All documentation:
https://paulscherrerinstitute.github.io/StreamDevice/

https://paulscherrerinstitute.github.io/StreamDevice/

232

Architecture

• Protocol file includes a set of protocols

• A protocol is a set of “instructions” how to make a
particular data exchange with a particular device

• Records may use one protocol to configure how they
function

• Records communicate with HW device by exchanging
the messages described in their assigned protocol via
an AsynPort Driver

IOC

Protocol file

(*.proto)

EPICS

record

HW

Device

AsynPort

Driver

233

Include Stream Device Support
• Stream Device support must be loaded in

EPICS Application
• In configure/RELEASE add the following lines

STREAM = /opt/epics/stream-<version>/

ASYN = /opt/epics/asyn-<version>/

• In <AppName>App/src/Makefile, include:
<AppName>_DBD += stream-base.dbd

<AppName>_DBD += asyn.dbd

<AppName>_DBD += drvAsynIPPort.dbd

<AppName>_LIBS += stream

<AppName>_LIBS += asyn

IOC

HW

Device

234

Asyn Port Driver Configuration

• AsynPort is initialized in IOC start file st.cmd

• IP connection:
drvAsynIPPortConfigure ("DEV1",

"192.168.1.212:8080")

Creates a connection called DEV1 with a network device
reachable at 192.168.1.212 over port 8080

• Serial connection:
drvAsynSerialPortConfigure("DEV2",

"/dev/ttyS1")

Creates a connection called DEV2 with a serial device
connected to /dev/ttyS1

• Optional asyn parameters (line terminators, serial
communication parameters…) may be specified with other
commands

IOC

HW

Device

AsynPort

Driver

• For debugging, the asyn trace mask can be
used to output to shell exactly what is being
transmitted:
asynSetTraceMask("DEV1",-1,0x9);

asynSetTraceIOMask("DEV1",-1,0x2)

• Check asynDriver.h for details

235

Record Configuration

• Two fields are used to tell a record to use Stream Device

• Device Type (DTYP):
field (DTYP, "stream")

• Either Input (INP) or Output (OUT):
field(INP,"@protoFile.proto getFrequency DEV1")

field(OUT,"@protoFile.proto setFrequency DEV1")

• First example tells input record to acquire its value using
protocol getFrequency, specified in the file
protoFile.proto, from device connection DEV1

• Second example tells output record to send its value using
protocol setFrequency, specified in the file
protoFile.proto, to device connection DEV1

IOC

EPICS

record

HW

Device

• Records that may use Stream Device out of
the box:
ai, ao, bi, bo, mbbi, mbbo,

mbbiDirect, mbboDirect, longin,

longout, stringin, stringout,

waveform, calcout, scalcout

• Others may as well, but require support

236

Protocol File Locations

• Records are given the name of a protocol file, but not
a path to find it

• Paths to protocol files are declared in st.cmd

• Using command:
epicsEnvSet("STREAM_PROTOCOL_PATH",

"/path1/:/path2/")

• Multiple paths can be provided using a colon as a
separator.

IOC

Protocol file

(*.proto)

HW

Device

237

Protocol Files

• Plain text ASCII files containing a set of protocols

• Each protocol has a name and a sequence of commands
• in string; - reads message that matches “string”

• out string; - sends message that matches “string”

• others: wait, event, exec, disconnect, connect

• “Strings” are matched using format converters
• doubles or floats: %f, %e, %E, %g, %G

• shorts, ints or longs: %d, %i, %u, %o, %x, %X

• strings or chars: %s, %c

• enumerations: %{string0|string1|...}

• others: %[charset], %b, %Bzo, %r, %R, %D, %<checksum>, %/regex/, %#/regex/subst/, %m, %T(timeformat)

• Optional width and flags can modify behaviour of format converters

• Width specifies number of characters string should have

• Flags: *(skip), #(format), +(positive int prefix), 0(pad), -(left justify), ?(allow fail), =(compare), !(impose width)

238

Features

• Protocol nesting – one protocol may call another

• Redirection – protocols may read/write from/to other records and/or fields (in general not a good
practice, but possible)

• System variables – preset variables (can be local or global): LockTimeout, WriteTimeout,
ReplyTimeout, ReadTimeout, PollPeriod, Terminator, OutTerminator, InTerminator,
MaxInput, Separator, ExtraInput

• User variables – free to customize, called with $ prefix

• Arguments – arguments can be passed from the record to the protocol it calls
(up to 9, called with \$1..\$9)

• Exception handlers – clauses that are called only when certain conditions are met:
@mismatch, @writetimeout, @replytimeout, @readtimeout, @init

239

Example Protocol File
Terminator = CR LF; # sets line terminators for both inputs and outputs to "\r\n"
f = "FREQ"; # User variable: sets f to "FREQ" (including the quotes)
f1 = $f " %f"; # User variable: sets f1 to "FREQ %f"
getFrequency { # ai record could call this using INP="@protoFile.proto getFrequency DEV1"

out $f "?"; # same as: out "FREQ?";
in $f1; # same as: in "FREQ %f";

}

setFrequency { # ao record could call this using OUT="@protoFile.proto setFrequency DEV1"
out $f1; # same as: out "FREQ %f";
@init { getFrequency; } # Exception handler calling another protocol: initial sync

}

getSwitch { # bi record could call this using INP="@protoFile.proto getSwitch DEV1"
out "SW?";

in "SW %{OFF|ON}"; # if input is "SW OFF" then VAL=0, if input is "SW ON" then VAL=1
}

setSwitch { # bo record could call this using OUT="@protoFile.proto setSwitch DEV1"
out "SW %{OFF|ON}"; # if VAL=0, send "SW OFF", if VAL=1, send "SW ON"
@init { getSwitch; } # Exception handler calling another protocol: initial sync

}

move { # longout record could call this using OUT="@protoFile.proto move(X) DEV1"
out "\$1 GOTO %d"; # Message sent would be "X GOTO %d"

}

debug { # Generic command for stringout record: any string written to
ExtraInput = Ignore; # … record’s VAL field is sent to device, any reply from device
out "%s"; in "%39c"; # … will be written to record’s VAL field cropped at 39 chars.

}

240

Messages don’t get mixed up!

• Use-case: Two records that use similar protocols for the same device are triggered to process at
(almost) the same time

• Record A protocol: { out “V PS1?”; in “%f”; }

• Record B protocol: { out “V PS2?”; in “%f”; }

• If both output messages are sent to the same device at the same time, how will the responses not
get mixed up?

• AsynDriver sends the first output message it receives (either A or B).

• Second output message gets buffered in a queue and doesn’t get sent (yet).

• Only once the first protocol is completed (a proper reply is received within the timeout), the second
output message gets sent automatically.

• AsynDriver takes care of everything!

241

Conclusion

• Stream Device offers universal support to integrate all message-based devices

• AsynDriver takes care of all the complicated low-level stuff and provides out-of-the-box support for most low-level
drivers:
serial, TCP/IP, VXI-11, IEEE-488, …

• Only configuration, no coding

• Protocols are reloadable → Faster development

• Support for most common record types

• Extendable:
• Write your own format converters

• Write support for other record types

• Use StreamDevice with other non-Asyn low-level drivers

• However:
• Not a programming language (no fors, ifs, etc.)

• Everything is a string (no other datatypes, just format converters)

• Line terminators can cause headaches (use Asyn Trace Mask for debugging!)

• Timeouts and errors must be handled

• Although quick to setup, can take time to make fail-safe (80/20 rule!)

242

Exercise 8

Application based on Stream Device

243

CS-Studio

244

Outline

• What is CS-Studio

• The motivation behind it

• CS-Studio core architecture

• CS-Studio functionalities - tools

245

What is CS-Studio?

• Control System Studio

• Common platform for control system applications

• Users – single point of control

• Developers – write portable applications

• Front-end to different control systems

246

Motivation

• Too many CS technologies

• X-Probe - Single-PV inspection

• StripTool - Plot live data over time

• Archive Data Viewer - Plot historic data over time

• Display Manager: EDM, MEDM – HMI display (and editor)

• …

• Different look and feel of applications

• No simple unified way of usage

• No inherent ability to exchange information between applications

• CS-Studio effectively combines all of those into one application

247

CS-Studio Phoebus

• Part of a wide community of users and developers:
BNL, DESY, FRIB, SNS, ITER, ESS, …

• Java – OS independent

• Open-source

• CS-Studio is simply a collection of plugins

• Some concepts:

• Editors (OPI editor, plot editor…)

• Views – windows that provide a view of data

• Perspectives – arrangement of views, editors, toolbars…

248

CSS Look
Editor: connected to

workspace resources

Detached view

outside of CSS

workbench

Workbench Users can

arrange views and editors

249

Layouts

• Different layouts can be used for different tasks

• Development

• Display Editor – Develop HMIs

• File Browser – List of all development files

• Production

• Alarm - Monitor alarms

• Data Browser - Plot data trends

• OPI Runtime - Interact with Control
System through HMIs

250

Advantages

• CS-Studio allows you to display/set global settings that impact the behavior of all tools

• Tools interact – drag-and-drop, open related displays from alarm tool...

• Perspectives – save personal or global arrangements of panels as different perspectives – alarm,
archiving ...

• Create custom CS-Studio – separate product

• In short - integration

251

Disadvantages

• Steeper learning curve

• Too many options for unexperienced users

• Lower performance and higher hardware requirements

• That’s about it

252

CS-Studio

GUI editor

253

Outline

• What is Display Builder?

• Runtime

• Editor

• Widgets

• Widget properties

• Scripting

254

What is Display Builder?

• Development and runtime environment

• Display Builder

• 2nd, improved version of dev and run-time environment

• Still in development

• Working on OPI files with extension .bob

• A Control System Studio tool – integrated with alarms, archiving ...

• Maintained by the EPICS / CS-Studio community

• Two Modes:

• Runtime – Use widgets to interact with PVs

• Editor – Design OPI by placing and configuring widgets

255

Runtime / Editor

• OPIs can be opened in different modes depending on the tool used:

• Runtime
• OPI is not editable

• OPI tries to connect to corresponding PVs (as CA clients)

• Can also be invoked with Ctrl+G or by clicking on the button:

• Editor
• OPI is editable

• No interaction with PVs, no CA requests

• Text Editor (to view OPI source, not practical in most cases)

256

CS-Studio

Run-time

257

Runtime

• Displays an already created screen

• Connect to the CS

• Draw widgets and update them to PVs

• Control PV values

• Very simple and straightforward operation

• Browser-like behavior

• Default – links to other screens open in the same window

• Possible – new tab or new window

258

What Does It Look Like

259

PV Connectivity

• Widgets automatically connect / reconnect to PVs

• If you restart IOC, no need to reopen / refresh OPI

• Common look for disconnected widgets

• If PV is write-disabled control widget will be disabled too

260

Runtime: Common PV Tools

• Context menu

261

CS-Studio

Editor

262

Editor

• Simple screen creation + advanced functionality

• WYSIWYG - What You See Is What You Get

• Standard operations

• Edit multiple widgets at once

• Copy/paste

• Move, resize, delete

• Undo/redo

• Align widgets with grid, other widgets

• Zoom

• ...

263

Editor Perspective
Perspective

Configuration

Navigator
Main Editor

Area

Palette

Widget

Properties

264

Widgets

• All available widgets are found in palette

• An OPI consists of a set of widgets laid out on
a grid with certain configurable attributes

• Categories of widgets:

• Graphics – illustrative only, no I&C interaction

• Monitors – display read-only PV data

• Controls – editable fields to write PV data

• Other (containers, groupings…)

265

Widget Properties

• Every widget has configurable properties that depend on the
widget type.

• Properties are grouped in logical categories, some of which
are:

• Widget (type of widget, name, class, associated PV, …)

• Position (coordinates, size)

• Position can also be modified by moving or resizing the widget in
the editor, or via Toolbar buttons to align etc.

• Behavior (actions, rules, scripts, tooltip, alarm sensitivity …)

• Miscellaneous (color, style,...)

266

PV Names

• ca://some_pv_name

• – EPICS Channel Access PV

• some_pv_name

o – Typically same, since “ca://” is the default

• sim://sine

o – Simulated PV. Read online help for details

• loc://x(4)

o – Local PV, initialized to value 4

• pva://some_pv_name

o – EPICS PV Access protocol

267

Macros

• Similar OPIs are often used to control similar devices

• No need to create new OPIs for each device of the same type.

• Instead use macros: $(macro) or ${macro}

• Most often used for partial PV name - $(pv)_setpoint or $(pv)_readback

• Such a display can then be invoked with pv=PowerSupply1 or PowerSupply2

detailed.opi

“$(pv)_setpoint”

detailed.opi

“$(pv)_setpoint”

main.opimain.opi

pv= PowerSupply1pv= PowerSupply1

pv= PowerSupply2pv= PowerSupply2

268

CS-Studio

Behavior

269

Widgets’ Behavior

• Rules

• Scripts

• Actions

270

Actions

• Widgets can have one ore more actions associated

• Open another OPI

• Write to PV

• Execute script

• Execute command

• Open file

• Open webpage

271

Rules

• Dynamic property changes – based on PV
values

• Rules use Boolean expressions to alter
one specific property

• Implemented as JavaScript (generated
automatically)

• Easier to maintain and control → use
scripts only when a rule can’t

272

Rules (cont.)

• How to define a rule

• Behavior → Rules

• Name new Rule

• Select property to modify

• Use PVs as parameters for Boolean expression

• Write conditions that override
property value

• Rule gets generated as a script

273

Scripts

• Complex behavior – attach JavaScript to
widget

• Access widget and it’s properties

• Access PVs related to the widget

• Script is triggered by input PVs

274

Scripts (cont.)

275

Examples

• Install and check examples!!!

• Note: Location of the examples could vary,
depends on CS-Studio distribution.

276

Exercise 9

Control System Studio

277

CS-Studio Tools

278

Included in the CSS

• Probe

• PV Tree

• PV Table

• Data Browser

• Connected to external services

• Alarms

• Data Browser

• Channel Finder

• Scan Editor/Monitor

279

Probe

• Allows basic reading and writing of PVs

• Display value, timestamp and alarms

• Adjust the value and update on IOC

280

PV Tree

• Displays hierarchical data flow between EPICS records

281

PV Table

• Tabular view of PV names and their current value

• Start/stop live update

• Snapshot of current values

• Indicating differences between current values and snapshot

282

Data Browser

• Display trends/history of the PVs

• Data from live PVs and/or archive services

• Options for exporting in different data formats

• Inspections of waveforms

283

Thank you.

Advancing humanity. Engineering remarkable.

www.cosylab.com

Žiga Oven

ziga.oven@cosylab.com

	Start
	Slide 1: EPICS Training

	Part 2: EPICS Foundations
	Slide 2: EPICS Foundations
	Slide 3: Overview
	Slide 4: Canonical Form of an EPICS Control System
	Slide 5: Introducing the IOC
	Slide 6: Inside an IOC
	Slide 7: Channel Access
	Slide 8: Inside an IOC
	Slide 9: EPICS Databases – What are they for?
	Slide 10: What are records?
	Slide 11: What are EPICS records?
	Slide 12: A Process Variable Name
	Slide 13: What do records do?
	Slide 14: Record Types
	Slide 15: Some Record Types
	Slide 16: Graphical View of a Record
	Slide 17: IOC View of a Record
	Slide 18: EPICS Databases – What are they?
	Slide 19: Our First Database
	Slide 20: Record Processing
	Slide 21: Inside an IOC
	Slide 22: The Sequencer
	Slide 23: SNL implements State Transition Diagrams
	Slide 24: State Transition Diagram Example
	Slide 25: Inside an IOC
	Slide 26: Device Support
	Slide 27: Device Support
	Slide 28: When to use databases
	Slide 29: When to use the sequencer
	Slide 30: When to use clients
	Slide 31: Command Line Clients
	Slide 32: How fast is EPICS?
	Slide 33: Database Processing
	Slide 34: Apparent Performance
	Slide 35: The EPICS Web Site

	Part 4: IOC Overview
	Slide 36: Getting Started with EPICS
	Slide 37: IOC Overview
	Slide 38: What is an Input/Output Controller?
	Slide 39: What does an Input/Output Controller do?
	Slide 40: ‘Host-based’ and ‘Target’ IOCs
	Slide 41: IOC Software Development Tools
	Slide 42: IOC Application Development Examples
	Slide 43: The makeBaseApp.pl Script
	Slide 44: Exercise 1
	Slide 45: Creating and initializing a new {TOP}
	Slide 46: {TOP} directory structure
	Slide 47: {TOP}/configure files
	Slide 48: Create a host-based IOC boot directory
	Slide 49: {TOP} directory structure
	Slide 50: {TOP} directory structure
	Slide 51: Exercise 2
	Slide 52: Build the application
	Slide 53: Exercise 3
	Slide 54: {TOP} directory structure after running make
	Slide 55: IOC Startup
	Slide 56: Example application startup script
	Slide 57: Example application startup script
	Slide 58: Example application startup script
	Slide 59: Example application startup script
	Slide 60: Example application startup script
	Slide 61: Example application startup script
	Slide 62: Example application startup script
	Slide 63: Example application startup script
	Slide 64: Example application startup script
	Slide 65: Example application startup script
	Slide 66: Exercise 4
	Slide 67: Running a host-based IOC
	Slide 68: Some Useful iocsh Commands
	Slide 69: Some Useful iocsh Commands
	Slide 70: Some Useful iocsh Commands
	Slide 71: Some Useful iocsh Commands
	Slide 72: Some Useful iocsh Commands
	Slide 73: Terminating a host-based IOC
	Slide 74: Command-Line Tools
	Slide 75: caget Example
	Slide 76: caput Example
	Slide 77: camonitor Example
	Slide 78: cainfo Example
	Slide 79: Review

	Part 5: Database Concepts
	Slide 80: Getting started with EPICS
	Slide 81: Contents
	Slide 82: Database = Records + Fields + Links
	Slide 83: Record Activity
	Slide 84: How is a record implemented?
	Slide 85: A Graphical View of a Record
	Slide 86: The IOC’s View
	Slide 87: Fields are for...
	Slide 88: Field Types
	Slide 89: All Records Have These Fields
	Slide 90: Other Interesting Fields
	Slide 91: Record Scanning
	Slide 92: Exercise 5
	Slide 93: Periodically Scanned Analog Input
	Slide 94: Interrupt Scanned Binary Input
	Slide 95: Passive Binary Output
	Slide 96: Links
	Slide 97: Input and Output links may be...
	Slide 98: Device Support
	Slide 99: Hardware Links
	Slide 100: Database Links
	Slide 101: Channel Access Links
	Slide 102: pvAccess Links
	Slide 103: Forward Links
	Slide 104: Exercise 5
	Slide 105: Processing Chains
	Slide 106: The PACT Field
	Slide 107: Processing Chains
	Slide 108: What happens here?
	Slide 109: Disable Processing
	Slide 110: Database Example
	Slide 111: How do records allocate CPU time?
	Slide 112: Alarms
	Slide 113: Change notification: Monitor deadbands
	Slide 114: Breakpoint Tables
	Slide 115: Simulation
	Slide 116: Exercise 5
	Slide 117: Access Security
	Slide 118
	Slide 119: EPICS 7 enhancement Atomic access
	Slide 120: EPICS 7 enhancement Groups
	Slide 121: Exercise 6

	Part 6: Records
	Slide 122: Getting Started with EPICS
	Slide 123: Scope
	Slide 124: EPICS Record Types
	Slide 125: Component Reference Manual
	Slide 126: Component Reference Manual (cont.)
	Slide 127: Collaboration Supported Records
	Slide 128: Record Types
	Slide 129: Input Records
	Slide 130: Input Records (cont.)‏
	Slide 131: Output Records
	Slide 132: Output Records (cont.)‏
	Slide 133: Algorithms/Control Records Calc
	Slide 134: Algorithms/Control Records Calc
	Slide 135: Algorithms/Control Records Subroutine
	Slide 136: Algorithms/Control Records Subroutine (impl.)
	Slide 137: Algorithms/Control Records Processing
	Slide 138: Algorithms/Control Records Analysis
	Slide 139: Examples of Custom Records
	Slide 140: Examples
	Slide 141: Database Example Analog Input (AI)
	Slide 142: Database Example Processing
	Slide 143: Database Example (Process Control)
	Slide 144: Database Example Calc (“Rate-of-Change” of Input)
	Slide 145: Database Example Simple Control
	Slide 146: Database Example Select
	Slide 147: Database Example seq
	Slide 148: Database Example Simulation Mode
	Slide 149: Database Example Automatic Shutdown on Logout
	Slide 150: Database Examples
	Slide 151: RECORDS
	Slide 152: Which record is right for …
	Slide 153: Creating Database Files
	Slide 154: Macro Substitutions
	Slide 155: Defining the Database
	Slide 156: Database Definition File Formats
	Slide 157: Database Definition File Formats
	Slide 158: Database File Formats
	Slide 159: Loading Database Files into the IOC
	Slide 160: Exercise 7

	Part 7: SNL
	Slide 161: Getting Started with EPICS
	Slide 162: Outline
	Slide 163: SNL and the Sequencer
	Slide 164: When to use the sequencer
	Slide 165: Where’s the Sequencer?
	Slide 166: The Best Place for the Sequencer
	Slide 167: SNL implements State Machines
	Slide 168: SM Example
	Slide 169: Some Definitions
	Slide 170: SNL: General Structure and Syntax
	Slide 171: Declarations – Variables
	Slide 172: Declarations – Assignments
	Slide 173: Declarations – Event Flags
	Slide 174: Events
	Slide 175: Possible Events (continued)‏
	Slide 176: Action Statements
	Slide 177: Example – State Definitions and Transitions
	Slide 178: Example – Declarations and State Transitions (actions omitted)
	Slide 179: Example – init state and low_vacuum state
	Slide 180: Example – high_vacuum state and fault state
	Slide 181: Building an SNL program
	Slide 182: Run Time Sequencer
	Slide 183: Executing a State Program
	Slide 184: Debugging
	Slide 185: Debugging (continued)‏
	Slide 186: Debugging – seqShow
	Slide 187: Debugging – seqShow
	Slide 188: Debugging – seqChanShow
	Slide 189: Additional Features
	Slide 190: Additional Features (continued)‏
	Slide 191: Advantages of SNL

	Part 8: Device Support
	Slide 192: Getting Started with EPICS
	Slide 193: Writing Device Support – Outline
	Slide 194: Device Integration Task
	Slide 195: Writing Device Support – Scope
	Slide 196: Goal
	Slide 197: Inside the IOC
	Slide 198: EPICS Databases – What are they for?
	Slide 199: How is a Record implemented?
	Slide 200: Device support diagram
	Slide 201: Specific record implementation
	Slide 202: What is ‘Device Support’?
	Slide 203: Device Support Architecture
	Slide 204: Why use device support?
	Slide 205: Where to look for help?

	Part 9: Asyn Driver
	Slide 206: EPICS Advanced part
	Slide 207: AsynDriver on the Web
	Slide 208: Goal
	Slide 209: Inside an IOC
	Slide 210: Device Support Architecture
	Slide 211: Device Support Approach
	Slide 212: ASYN Definition
	Slide 213: Device Support Using Asyn
	Slide 214: Why is this so cool?
	Slide 215: Asyn Architecture
	Slide 216: Asyn Architecture (Cont.)
	Slide 217: Generic Device Support
	Slide 218: How is it done?
	Slide 219: Record Configuration
	Slide 220: Synchronous Flow
	Slide 221: Synchronous Methods
	Slide 222: Asynchronous Flow
	Slide 223: Support for Interrupts
	Slide 224: Adding ASYN: Application Conf.
	Slide 225: Adding ASYN: DB Configuration
	Slide 226: ASYN Port Implementation
	Slide 227: ASYN Port Implementation (cont.)
	Slide 228: Existing Port Drivers

	Part 10: Stream Device
	Slide 229: EPICS Advanced part
	Slide 230: Overview
	Slide 231: What is StreamDevice?
	Slide 232: Architecture
	Slide 233: Include Stream Device Support
	Slide 234: Asyn Port Driver Configuration
	Slide 235: Record Configuration
	Slide 236: Protocol File Locations
	Slide 237: Protocol Files
	Slide 238: Features
	Slide 239: Example Protocol File
	Slide 240: Messages don’t get mixed up!
	Slide 241: Conclusion
	Slide 242: Exercise 8

	Part 10: CS-Studio
	Slide 243: CS-Studio
	Slide 244: Outline
	Slide 245: What is CS-Studio?
	Slide 246: Motivation
	Slide 247: CS-Studio Phoebus
	Slide 248: CSS Look
	Slide 249: Layouts
	Slide 250: Advantages
	Slide 251: Disadvantages
	Slide 252: CS-Studio
	Slide 253: Outline
	Slide 254: What is Display Builder?
	Slide 255: Runtime / Editor
	Slide 256: CS-Studio
	Slide 257: Runtime
	Slide 258: What Does It Look Like
	Slide 259: PV Connectivity
	Slide 260: Runtime: Common PV Tools
	Slide 261: CS-Studio
	Slide 262: Editor
	Slide 263: Editor Perspective
	Slide 264: Widgets
	Slide 265: Widget Properties
	Slide 266: PV Names
	Slide 267: Macros
	Slide 268: CS-Studio
	Slide 269: Widgets’ Behavior
	Slide 270: Actions
	Slide 271: Rules
	Slide 272: Rules (cont.)
	Slide 273: Scripts
	Slide 274: Scripts (cont.)
	Slide 275: Examples
	Slide 276: Exercise 9
	Slide 277: CS-Studio Tools
	Slide 278: Included in the CSS
	Slide 279: Probe
	Slide 280: PV Tree
	Slide 281: PV Table
	Slide 282: Data Browser

	End
	Slide 283

