
HZB

EPICS IOC Training

Training Handout

Berlin, August 2025

Author(s)

Name Role/Affiliation

Žiga Oven Cosylab

Jure Varlec Cosylab

Advancing humanity.
Engineering remarkable.

EPICS IOC Training Final

Contents

Exercise 1: Create an example EPICS Application 3

Exercise 2: Inspect EPICS database 4

Exercise 3: Compile EPICS application 5

Exercise 4: Start an IOC for your application 6

Exercise 5: EPICS Record Basics 7

Exercise 6: Processing Chains 9

Exercise 7: A Chiller Application 10

Exercise 8: Application Based on Stream Device 11

Exercise 9: Control System Studio (CS-Studio or CSS) 12

Exercise 10: EPICS 7 PVAccess and Groups (OPTIONAL) 13

Appendix 14

Abbreviations . 14

Links . 14

Helpful tools to install on Linux machine . 15

EPICS Command Line Tools . 15

©2025 Cosylab 2/15

EPICS IOC Training Final

Exercise 1: Create an example EPICS Application

1. Enter your home directory in terminal:

cd

2. Create a directory structure where you will create your first EPICS example application:

mkdir -p workspace/ex1

3. Enter a directory for your first example application:

cd workspace/ex1

4. Create an EPICS application with the following command:

makeBaseApp.pl -t example ex1

5. Create an IOC inside an EPICS application with the following command:

makeBaseApp.pl -i -t example ex1

Note: If you understood what you have to do, but found it difficult to do this exercise, ask the

trainer for advice. It may be there are tools that you will find easier to use!

©2025 Cosylab 3/15

EPICS IOC Training Final

Exercise 2: Inspect EPICS database

Open a text editor such as gedit (using the gedit command from a terminal), and open file

dbExample1.db:

gedit ex1tApp/Db/dbExample1.db

Examine the file and records that it contains.

©2025 Cosylab 4/15

EPICS IOC Training Final

Exercise 3: Compile EPICS application

Go to the root folder of your EPICS application, ex1 and compile the entire application by typing:

make

Check the output of your compilation and make sure there are no compilation errors.

If you had no errors, then your application is ready to run.

©2025 Cosylab 5/15

EPICS IOC Training Final

Exercise 4: Start an IOC for your application

1. Enter your IOC directory:

cd iocBoot/iocex1

2. And from there start the IOC using the st.cmd file as a parameter to the executable that

was built in previous exercise:

../../bin/linux-x86_64/ex1 st.cmd

3. Observe what happens.

4. Exit the IOC

a. Type exit or press Ctrl + d

b. Press Ctrl + c

c. Terminate from another window/terminal

kill -9 `pgrep ex1`

Explain the differences between these methods. How do they affect the IOC shutdown

process?

5. Start an IOC again

6. Check commands inside the IOC shell

help

dbl

dbgf

help dbpr dbgf dbpf

dbgf <pv_name>

dbpf <pv_name> <value>

7. Read from / write to one of the PVs from another window/terminal

pvget <pv_name>

pvmonitor <pv_name>

pvput <pv_name> <value>

©2025 Cosylab 6/15

EPICS IOC Training Final

Exercise 5: EPICS Record Basics

1. Create a database file in the correct location inside EPICS application.

1.1 The new file does need to be added to the local Makefile. Append the following line in

the appropriate place:

DB += <name_of_your_new_database>.db

1.2 The module needs to be recompiled whenever any source file is added or modified.

1.3 The new database has to be loaded into the IOC via dbLoadRecords command in the

st.cmd file

2. Create a record of type ai with name $(user):Input_1; provide a description.

record(ai, "$(user):Input_1") {

field(DESC, "A nice and descriptive description")

}

2.1 Try reading the description and the value using PVAccess.

2.2 Try setting the value.

3. Set the TPRO field of <user>:Input_1 to nonzero value.

pvput <user>:Input_1.TPRO 1

3.1 Read the record value from the IOC console.

3.2 Read the record value via PVAccess while observing the IOC console.

3.3 Set the value from the IOC console.

3.4 Set the value via PVAccess while observing the IOC console.

3.5 Write to the PROC field while observing the IOC console.

4. Create a calc record named $(user):Calculation_1 that multiplies the value of Input_1

by 100.

record(calc, "$(user):Calculation_1") {

field(DESC, "Description must be useful to operators")

field(INPA, "$(user):Input_1")

field(CALC, "A * 100")

}

4.1 Read the value after IOC boots. What is the STAT of the record?

4.2 Process the record, then read the value again. What is the STAT of <user>:Input_1?

4.3 Change the value of <user>:Input_1, then read the value of <user>:Calculation_1.

Process <user>:Calculation_1, then read the value again.

5. Set the EGU field to an arbitrary unit and read the value using PVAccess. Notice that pvget

does not show the unit. What purpose does the EGU field serve?

©2025 Cosylab 7/15

EPICS IOC Training Final

6. Choose alarm thresholds and severities, try setting and reading different values inside and

outside of the limits.

7. Monitor the value of <user>:Input_1 with pvmonitor.

7.1 Try writing the same value to the record several times. How many updates do you see?

How many times does the record process?

7.2 Try writing different values. How many updates do you see?

7.3 What happens if you set the MDEL field to non-zero value?

7.4 What happens if you set the MDEL field to -1?

©2025 Cosylab 8/15

EPICS IOC Training Final

Exercise 6: Processing Chains

Extend the previous exercise with database scanning. Implement the “push” and “pull” approaches

depicted in the image.

Figure 1: Processing chains

Next, reimplement the “push” chain by using CP links.

©2025 Cosylab 9/15

EPICS IOC Training Final

Exercise 7: A Chiller Application

Goal: Create a new module based on picture below:

Figure 2: EPICS Database

Steps:

0. Create a new folder inside your workspace directory.

1. Create a new EPICS application and IOC with makeBaseApp.pl and call it wch. This time use

the template named ioc

makeBaseApp.pl -t ioc wch

makeBaseApp.pl -i -t ioc wch

2. Create a database file in the correct location and include appropriate instruction into the

Makefile

3. Load newly created database in the st.cmd file

4. Have a setpoint record that simulates readback from temperature sensor

5. Have a setpoint record that determines the threshold for the operation of the water chiller

6. Have a record that simulates control of the water chiller On/Off switch

7. Periodic processing of the records to see if the temperature is OK and turn on the water

chiller if necessary

8. Add alarm to notify that the temperature is to high

9. Have a record that shows the status of the section

• Proposed statuses: Normal operation, Maintenance

10. Disable record processing based on the status of section

11. Save the setpoint for the threshold through IOC reboots

12. Simulate input to read-back PV to be a sin wave

©2025 Cosylab 10/15

EPICS IOC Training Final

Exercise 8: Application Based on Stream Device

1. Clone repository from GitLab and inspect to what commands it responds

1.1. Clone from GitLab.com

git clone https://gitlab.com/zoven/stream-simulator.git

1.2. Enter the folder and examine the simulator.py file for which commands it will accept

2. Start the simulator and test the behavior

2.1 Start the simulator

./simulator.py

2.2 Open another terminal and connect via telnet

telnet 127.0.0.1 5555

You may need to install it first with sudo apt install telnet.

3. Create a new EPICS application using makeBaseApp.pl.

3.1. Add ASYN and STREAM dependencies in configure/RELEASE

3.2. Include stream-base.dbd, asyn.dbd and drvAsynIPPort.dbd into src/Makefile

3.3. Link against stream and asyn library in src/Makefile

3.4. Create a new protocol file in the same location as your databases

3.5. Create a database that can talk to the simulator

3.6. Install the both database and protocol file with Makefile definition

DB += <your_new_database>.db

DB += <your_new_protocol>.proto

4. Create a startup script.

4.1. Create an asyn port for StreamDevice to communicate through

Connect to simulator through asyn IP Port

drvAsynIPPortConfigure("DEV1", "127.0.0.1:5555")

4.2. Provide path to protocol file

Provide path to the protocol file(s)

epicsEnvSet("STREAM_PROTOCOL_PATH", "${TOP}/db/")

4.3. Load created database

4.4. Start the IOC and examine the operation

©2025 Cosylab 11/15

EPICS IOC Training Final

Exercise 9: Control System Studio (CS-Studio or CSS)

1. Open CS-Studio

phoebus_start

2. Create a new display using Display Editor

Application > Display > New Display

3. Save the file to desired location

3.1. File > Save As ...

3.2. Select the path and provide the Name:

3.3. Save

4. Start adding widgets

4.1. Create a display for the records from the Exercise 7

5. Open display file in runtime mode

5.1. Right click on display file

5.2._a_ Execute Display

or

5.2._b_ Click the green play button in the top right corner

6. Observe the results, test the inputs

7. Extend display for Exercise 7 with:

7.1. Widgets for setpoint and readback parameters

7.2. Plot for water chiller control and temperature readback PVs

7.3. Widgets for showing the alarm status

©2025 Cosylab 12/15

EPICS IOC Training Final

Exercise 10: EPICS 7 PVAccess and Groups (OPTIONAL)

1. In startup script of first exercise include circle.db database from the module

4.1. Examine what is inside the database before including into startup script

2. Issue following commands in the IOC shell:

> help dbl

> dbl

> help pval

> pval

Carefully examine the output of both listings and note the differences.

3. Issue following commands on a terminal:

pvlist -h

pvlist

pvlist <GUID or ipaddr:port>

pvinfo <pv>

pvget -h

pvget -v <pv>

pvget -r 'field()' <pv>

pvmonitor -vv <pv>

Compare the output of pvlist to the listings obtained from the IOC shell.

4. Try any (or all) of the commands on the $(user):circle or $(user):line process variables.

In particular, try

• dbgf $(user):circle from the IOC shell,

• caget $(user):circle from the Linux shell,

• pvget $(user):circle from the Linux shell.

Explain their behavior.

©2025 Cosylab 13/15

EPICS IOC Training Final

Appendix

Abbreviations

ADC Analog to Digital Converter

CA Channel Access

CAC Channel Access Client

CAS Channel Access Server

CSS Control System Studio

EPICS Experimental Physics and Industrial Control System

GUI Graphical User Interface

HLA High Level Application

IOC Input Output Controller

LLA Low Level Application

PV Process Variable

PVA PV Access

PVAS PV Access Server

PVAC PV Access Client

Abbreviation Description

Links

• EPICS

– https://epics-controls.org

– https://epics.anl.gov

– https://github.com/epics-base/

– https://docs.epics-controls.org/en/latest/index.html

• Application Developers Guide [base-3.16.2]

– https://epics.anl.gov/base/R3-16/2-docs/AppDevGuide.pdf

– https://docs.epics-controls.org/en/latest/appdevguide/AppDevGuide.html

• Component Reference Manual:

– https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html

• Collaboration Supported Records:

– https://epics-controls.org/resources-and-support/modules/soft-support/

• EPICS modules: https://github.com/epics-modules

– ASYN

* https://epics.anl.gov/modules/soft/asyn/

* https://github.com/epics-modules/asyn

©2025 Cosylab 14/15

https://epics-controls.org
https://epics.anl.gov
https://github.com/epics-base/
https://docs.epics-controls.org/en/latest/index.html
https://epics.anl.gov/base/R3-16/2-docs/AppDevGuide.pdf
https://docs.epics-controls.org/en/latest/appdevguide/AppDevGuide.html
https://epics.anl.gov/base/R7-0/9-docs/ComponentReference.html
https://epics-controls.org/resources-and-support/modules/soft-support/
https://github.com/epics-modules
https://epics.anl.gov/modules/soft/asyn/
https://github.com/epics-modules/asyn

EPICS IOC Training Final

* https://epics-modules.github.io/asyn/

– autosave: https://github.com/epics-modules/autosave

– iocStats: https://github.com/epics-modules/iocStats

– sequencer: https://epics-modules.github.io/sequencer/

• CS-Studio

– http://controlsystemstudio.org

Helpful tools to install on Linux machine

sudo apt install <package>

• htop - system monitoring tool

• vim - terminal text editor

• gedit - standalone (GUI) text editor

• telnet - a tool for text communication

• netcat - alternative to telnet

EPICS Command Line Tools

Get value of one or more PVs pvget

Monitor value changes of one or more PVs pvmonitor

Set the value of one PV pvput

Get information about one or more PVs pvinfo

Get a list of IOCs and their PVs pvlist

Description Command

©2025 Cosylab 15/15

https://epics-modules.github.io/asyn/
https://github.com/epics-modules/autosave
https://github.com/epics-modules/iocStats
https://epics-modules.github.io/sequencer/
http://controlsystemstudio.org

	Exercise 1: Create an example EPICS Application
	Exercise 2: Inspect EPICS database
	Exercise 3: Compile EPICS application
	Exercise 4: Start an IOC for your application
	Exercise 5: EPICS Record Basics
	Exercise 6: Processing Chains
	Exercise 7: A Chiller Application
	Exercise 8: Application Based on Stream Device
	Exercise 9: Control System Studio (CS-Studio or CSS)
	Exercise 10: EPICS 7 PVAccess and Groups (OPTIONAL)
	Appendix
	Abbreviations
	Links
	Helpful tools to install on Linux machine
	EPICS Command Line Tools

