MAURIZIO MONTIS

MAURO GIACCHINI

Mastering EPICS

Essential
Technologies and
Architectures

BERLIN, 21ST AUGUST 2025

Contents

- ▶ EPICS in a Nutshell
- ► Field Buses
- Device Communication
- Controllers
- Networking
- ► Human-Machine Interface (HMI)
- ▶ IT Architecture

About this presentation...

This presentation is long (and probably quite boring), but it's full of valuable information

- By the end, you might have a headache
- The Goal isn't to learn everything right now, but to get an idea of what you need to learn and explore in your career

Knowing doesn't mean being a black belt in the topic, but knowing what to look for when you don't know something

What is EPICS?

- ► A collaboration (Day 1, Ralph's talk)
 - A worldwide collaboration that shares designs, software tools, and expertise for implementing large-scale control systems
- A control system architecture
 - A client/server model with an efficient communication protocol (Channel Access) for passing data
 - A distributed database of machine values
- A software toolkit
 - A collection of software tools collaboratively developed which can be integrated to provide a comprehensive and scalable control system

Speaking in... EPICS

▶ EPICS

Experimental Physics and Industrial Control System

► CHANNEL ACCESS (CA) / PVACCESS (PVA)

(CA) Communication protocol used by EPICS (PVA) New Communication protocol used by EPICS 7

- ► PROCESS VARIABLE (PV)
 - A piece of named data referred to by its PV name.
 - 2. The primary object of the channel access protocol

Speaking in... EPICS

► INPUT OUTPUT CONTROLLER (IOC)

A computer running a set of EPICS routines used to define PVs and implement (real-time) control algorithms

▶ SOFT IOC

An instance of IOC running as a process on a "non-dedicated" computer, such as a general purpose computer

▶ RECORD

The mechanism by which a PV is defined in an IOC

Many record types available, each with it's own attributes and processing routine that describe its functionality

Control System Architecture

- Network-based "client/server" model where EPICS servers (CAS) and clients (CAC) "speak" Channel Access (CA)
- EPICS is a distributed control system where every client can see all the servers
- The "service" that a Channel Access server provides is access to a Process Variable
- The Process Variable (PV) is a named piece of data.
 The name must be unique!

Control System Architecture

Examples of PV names and values:

PV NAME	VALUE
RFQ:VAC:Pressure	6.2e-08 mBar
LINAC_BPM4:xPosition	-0.117 mm
BOOSTER:gateValvePosition	'OPEN'
Line3:DIPOLE_PS-setPoint	502.7 Amps
LINE_Ctlr:Mode	'Warm Up'
BOX2:HIST	{13, 8, 21, 22, 56, 44, 32, 43, 33, 15, 11}

Example of attributes:

ATTRIBUTES	Note
Alarm Severity	NO_ALARM, MINOR, MAJOR, INVALID
Alarm Status	LOLO, LOW, HIGH, HIHI, READ_erroretc.
Timestamp	
Number of Elements (array)	
Calculation Condition	A>B?A+B:C
Engineering Unit	"Volt", "A", "%", "mm"

Control System Toolkit

Any tool/program/application that abides by the Channel Access protocol could be described as "EPICS Compliant"

► EPICS can be viewed as a "toolkit" of EPICS compliant programs. One can select the appropriate tool for their need or develop their own.

Field Buses

UNDERSTANDING AND IMPLEMENTING FIELD BUSES FOR EFFICIENT CONTROL

Introduction to Field Buses

What are Field Buses

- **Definition:** Field Buses are industrial network systems used for real-time distributed control
- Purpose: They enable communication between various devices such as sensors, actuators, and controllers in a control system, allowing for efficient communication and data exchange between devices on the field within industrial processes
- Key Aspects:
 - Real-time Communication
 - Decentralized Control
 - Interoperability

▶ Roles of Field Buses in Control System

▶ Field Buses streamline data exchange and control commands, increasing the efficiency and reliability of control systems.

Common Field Buses

CAN Bus (Controller Area Network)

- Widely used in automotive and industrial applications
- Supports real-time control and high data integrity

Profibus (Process Field Bus)

- Common in process automation and factory automation
- Offers high-speed communication and extensive diagnostic capabilities

Modbus

- Simple and open protocol used in various industrial environments
- Supports communication over serial and Ethernet networks

Profibus

Features

- High-speed communication and extensive diagnostic functions
- Supports a wide range of devices and configurations and it can handle multiple devices on a single network
- Provides reliable and robust communication in harsh industrial environments
- Offers flexibility with different transmission speeds and cable types
- Enables efficient diagnostics and monitoring of connected devices

Integration with EPICS

EPICS supports Profibus through various hardware interfaces and software drivers.

Modbus

Features

- Simple and open protocol with wide adoption
- Developed by Modicon in 1979 for PLCs
- Supports master-slave architecture with up to 247 slaves
- Uses RS-232, RS-485 or Ethernet physical layers
- Has simple and efficient message structure and it supports multiple data types and functions codes
- Has become an industry standard for industrial automation systems, and continues to evolve with new variants such as Modbus TCP/IP

Integration with EPICS

▶ EPICS supports Modbus for both serial and TCP/IP communication.

One of the most used in our Environment

Comparison of Field Buses

Feature	CAN bus	PROFIBUS	Modbus
Communication Type	Peer-to-peer	Master-slave	Master-slave
Data Transmission	Message-oriented	Field-oriented	Field-oriented
Speed	Up to 1 Mbps (Classical CAN)	Up to 12 Mbps (PROFIBUS DP)	Up to 115.2 kbps (Modbus RTU)
Topology	Bus, star, tree	Bus, star	Bus, star
Medium	Twisted pair, fiber optics	Twisted pair, fiber optics	Twisted pair, fiber optics, Ethernet (for Modbus TCP)

Comparison of Field Buses

Feature	CAN bus	PROFIBUS	Modbus
Max. Nodes	Up to 110	Up to 126	Up to 247 (Modbus RTU), virtually unlimited (Modbus TCP)
Distance	Up to 40 meters at 1 Mbps	Up to 100-1200 meters	Up to 1200 meters (Modbus RTU)
Error Handling	Robust error detection & correction	Comprehensive error-checking	Simple CRC error- checking
Network Management	Device-oriented, CANopen adds higher-layer protocols	Centralized configuration and diagnostics	Simple, minimal configuration needed

Device Communication

EFFECTIVE DEVICE COMMUNICATION FOR CONTROL SYSTEMS

Device Communication

Communication between the device and the controller to send and acquire data

Many ways to exchange data:

- Different hardware
- Different communication
- Different controllers for the logic

Serial Communication

► RS232:

- Standard for serial communication with low-speed, short-distance data transmission.
 - ▶ Max Distance: 15 Meters (50 feet)
 - ▶ Max Speed: 115.2 Kbps
- Used for connecting peripherals such as sensors and controllers
 - ▶ Max Devices: Point-to-Point (1 device to 1 device)
 - Common in legacy systems within nuclear facilities

RS485:

- Supports higher speeds and longer distances than RS232
 - ▶ Max Distance: 1200 Meters (4000 feet)
 - ► Max Speed: 10 Mbps Kbps
- Used in industrial environments for connecting multiple devices on the same bus in harsh environment.
 - Max Devices: Up to 32 Devices on a single bus (expandable with repeaters)

Ethernet-based Communication

Network-based communication:

	Cat5e	Cat6	Optical Fiber
Max Distance	100 meters	100 meters	Up to 10 kilometers
Max Speed	Up to 1Gbps	Up to 10Gbps	Up to 100Gbps or more
Max Devices	Virtually unlimited within network segments, managed by switches and router		

Usage:

- Connecting control systems and monitoring devices
- ▶ High-speed data transfer for real-time monitoring
- Remote access and control of equipment
- ▶ Integration with EPICS for comprehensive control and data acquisition

Interface Cards and Modules

Input/Output (I/O) cards are hardware interfaces that facilitate communication between the central processing unit (CPU) and external devices. They can handle both digital and analog signals

Analog I/O:

- Handles continuous signals (e.g., voltage, current)
- ► Typical Input Range: 0-10V, 4-20mA
- Resolution: 12-bit, 16-bit, 24-bit ADCs

▶ Digital I/O:

- Manages discrete signals (e.g., on/off states)
- Voltage Levels: 5V TTL, 24V industrial standard

ADCs (Analog-to-digital Converters):

- Convert analog signals to digital data for processing
- Resolution: 12-bit to 24-bit
- Sampling Rate: Up to 1 MSPS (Mega Samples Per Second)

DACs (Digital-to-Analog Converters):

- Convert digital data to analog signals for control
- Resolution: 12-bit to 16-bit
- Output Range: 0-10V, 4-20mA

Controllers

IMPLEMENTING DEDICATED CONTROL UNITS TO EXECUTE LOGIC,
COORDINATE DEVICES, AND ENSURE SYSTEM AUTOMATION

Slow Controls: PLC

PLC (**Programmable Logic Controller**) is a type of digital computer that is specifically designed to control and automate machinery or industrial processes. It is commonly used in manufacturing plants, factories, and other industrial settings.

Input/output (I/O) Capabilities:

- Digital I/O: Typically 24V DC, 120V AC, 240V AC
- Analog I/O: 0-10V, 4-20mA
- ▶ Modular I/O Expansion: Allows for scalability

Processing Speed:

- ▶ Scan Time: 1 ms to 10 ms per 1K instructions
- Memory:
 - Program Memory: Ranges from a few KB to several MB
 - Data Memory: For storing variables and temporary data

Communication Protocols:

- Ethernet/IP, Modbus, Profibus, DeviceNet
- Environments Specs:
 - Operating Temperature: 0°C to 60°C
 - Shock and Vibration: Designed to withstand harsh industrial environments

Features:

- Robust and reliable operation
- Programmable for various control tasks
- Redundancy and failover capabilities for critical applications
- Integrated HMI (Human-Machine Interface) for user interaction

Fast Controls: MicroTCA

Micro Telecommunications Computing Architecture (MicroTCA or µTCA) is a modular, open standard developed by the PCI Industrial Computer Manufacturers Group (PICMG) for building high-performance, reliable, and scalable computing and communication systems.

Architecture:

- Based on AdvancedTCA (ATCA) standards, but more compact
- Supports multiple Advanced Mezzanine Cards (AMCs) in a single chassis

Processing Power:

- Supports multi-core processors and highspeed interconnects
- Typical data throughput: Up to 40 Gbps per channel

Latency:

 Ultra-low latency, typically in the microsecond range

Redundancy and Reliability:

Hot-swappable modules for high availability

Features:

- Modular and scalable architecture for flexible system design
- High-speed data acquisition and processing
- Integrated management and monitoring capabilities
- Redundancy and failover mechanisms for critical applications

General Purpose Controls: PC

PC-based controllers use standard computers equipped with generic or real-time operating systems to run control applications.

Architecture:

- Based on commercial off-the-shelf (COTS) hardware
- Compatible with multiple operating systems (Windows, Linux, RTOS)
- Possibility to integrate dedicated acquisition cards (DAQ, FPGA, GPU)

Processing Power:

- Variable processing capacity: from small form factors to rack-mounted servers
- Large RAM memory and SSD/NVMe storage for high I/O performance

Latency:

- Typically in the order of milliseconds with standard OS
- Possibility of reducing to microseconds with realtime kernel or dedicated hardware

Communication Protocols:

- Ethernet, TCP/IP, UDP, serial, PCIe, USB
- Support for industrial protocols via software or dedicated cards (Modbus, EtherCAT, OPC-UA)

Features:

- Highly flexible and reconfigurable via software
- Wide availability of open-source and commercial libraries and development tools
- Horizontal scalability via clustering or virtualization
- Integration with HMI, SCADA systems and databases
- Easy hardware and software upgrades

Networking

THE IMPORTANCE OF NETWORK INFRASTRUCTURE IN CONTROL SYSTEMS

Importance of network infrastructure in control systems

- The network infrastructure forms the core communication framework for EPICS
- A robust network infrastructure ensures that data flows seamlessly between devices, facilitating real-time monitoring and control

Key components

- network architecture
- components
- topologies
- protocols
- security measures

Importance of a Reliable Network

- Any network failure or disruption can lead to significant operational issues, potentially halting experiments or processes.
- By understanding and implementing robust network infrastructures, we can minimize downtime, enhance sécurity, and ensure the smooth operation of the control systems.

Basic of Network Architecture

Local Area Network (LAN)

- LANs are networks that cover a small geographic area, typically within a single building or campus.
- They are used to connect computers and devices within a localized area, enabling high-speed data transfer and resource sharing.
- In an EPICS control system, LANs are often used to connect devices within a laboratory or facility.

Wide Area Network (WAN) and Metropolitan Area Network (MAN)

- WANs and MANs cover a larger geographic area, connecting multiple LANs across cities, regions, or even countries.
- MANs are usually smaller than WANs
- They facilitate communication and data exchange over long distances, often using leased lines, satellite links.
- For EPICS systems, WANs might be used to link control systems across different facilities or research centers, allowing centralized or remote monitoring (i.e. IFMIF console at LNL by VPN)

Baselines for designing EPICS network

When designing network architecture for EPICS control systems, several key factors must be considered:

Bandwidth

- requirements to handle the volume of data traffic.
- Minimum Bandwidth: 1 Gbps (Gigabit per second)
- EPICS systems often handle significant amounts of data, including real-time monitoring and control data. A minimum of 1 Gbps ensures sufficient throughput for most control system applications. Higher bandwidth, such as 10 Gbps, might be required for data-intensive environments.

Latency

- and response time to ensure real-time control and monitoring.
- Minimum Latency: < 1 ms (millisecond) for LAN; < 50 ms for WAN (longer distances)</p>
- Low latency is important for real-time control and monitoring to ensure timely responses to system events and commands.

When designing network architecture for EPICS control systems, several key factors must be considered:

Scalability

- to accommodate future expansion and increased data loads.
- Number of Devices: the architecture should support scaling up to thousands of devices without significant degradation in performance.
- Network Segmentation: usage of VLANs or subnetting to manage and segregate network traffic efficiently. (i.e. VLAN to develop, and VLAN to production ...)

Security

- to protect sensitive data and control commands from unauthorized access. (i.e. ACL)
- <u>Firewall</u>: Implementation of hardware and software firewalls to protect network boundaries
- ▶ <u>VPNs</u> (Virtual Private Networks): For secure remote access and data transfer.
- Regular updates and patching: Keeping all network devices and software up to date with the latest security patches.

Network Components

Routers

- Function: forward data packets between computer networks. Think of a router as a traffic director on the internet or within your network at home or work.
- Routers works at Layer 3 of the OSI model:
 - Layer 1: Physical Layer for routers, layer 1 ensures that the device can physically connect to the network.
 - Layer 2: Data Link Layer routers mainly work above this layer but can use MAC addresses to interact with switches.
 - Layer 3: Network Layer
 This is where routers primarily operate. The Network Layer uses IP addresses to direct data packets between different networks.

Routers

Network Components

Switches

- ▶ Function:
 - Switches are networking devices that connect devices within a single network, such as computers, printers, and servers, enabling them to communicate with each other.
 - Operating at the data link layer (Layer 2) of the OSI model, switches use MAC addresses to forward data to the correct destination.

7 Layers of the OSI Model • End User laver Application . HTTP, FTP, IRC, SSH, DNS Syntax layer Presentation · SSL, SSH, IMAP, FTP, MPEG, JPEG · Synch & send to port Session · API's, Sockets, WinSock · End-to-end connections **Transport** • TCP, UDP Network Packets • IP, ICMP, IPSec, IGMP Data Link • Ethernet, PPP, Switch, Bridge Physical structure Physical · Coax, Filter, Wireless, Hubs, Repeaters

Routers

Switches

Network Components

Firewalls

- ▶ Function:
 - Security devices that monitor and control incoming and outgoing network traffic based on predetermined security rules.
 - Types:
 - 1. hardware-based
 - 2. software-based
 - 3. combination of both
 - They operate at various layers of the OSI model, primarily at Layer 4 (transport) and Layer 7 (application)

Network Components

Network Cabling

Ethernet:

- ▶ Ethernet cables are the most common type of network cabling, used for connecting devices in LANs.
- They offer a balance of speed, reliability, and cost-effectiveness, supporting speeds up to 10 Gbps and beyond.
- ▶ The most widely used Ethernet cables include
 - Cat5e supports speeds up to 1 Gbps
 - ▶ Cat6 can handle up to 10 Gbps over shorter distances
 - ► Cat6a extends Cat6 capability to longer distances

Fiber Optic:

- ▶ Fiber optic cables use light to transmit data, providing much higher bandwidth and longer transmission distances compared to Ethernet.
- They are ideal for high-speed, high-capacity networks and are often used for backbone connections and data centers

Cat5e Wire Diagram for T568B (Straight Through Cable)					
RJ45 Pin#	Wire Color (T568A)	Wire Diagram (T568A)	10Base-T Signal 100Base-TX Signal	1000Base-T Signal	
1	White/Orange		Transmit+	BI_DA+	
2	Orange		Transmit-	BI_DA-	
3	White/Green		Receive+	BI_DB+	
4	Blue		Unused	BI_DC+	
5	White/Blue		Unused	BI_DC-	
- 6	Green		Receive-	BI_DB-	
7	White/Brown		Unused	BI_DD+	
8	Brown		Unused	BI_DD-	

Maurizio Montis Mastering EPICS

Network Topology

A network topology is the physical and logical arrangement of nodes and connections in a network. Nodes usually include devices such as switches, routers and software with switch and router features

 Most of the cases, control system architectures are based on Tree type topology

Network Topology Example: Tree

Tree topology is essentially a combination of star and bus topologies.

- Characteristics:
 - the network is divided into levels
 - ▶ This hierarchical structure allows for organized and scalable network design, making it easier to manage large networks.
- EPICS network can be usually seen as Tree topology

Network Protocols

 Communication protocols ensure that information is exchanged accurately and efficiently, allowing for seamless communication between systems regardless of their underlying technologies or architectures

- The principal network protocols used in EPICS control system architectures are:
 - ► TCP Transmission Control Protocol
 - UDP User Datagram Protocol
 - SNMP Simple Network Management Protocol

Network Protocols

Protocol	Function	Advantages	Usage in EPICS
TCP (Transmission Control Protocol)	Reliable, connection- oriented protocol. Handles error checking and retransmission of lost packets.	 Reliable data transmission Broad hardware/software support 	Used for critical control commands and status updates where reliability is key.
UDP (User Datagram Protocol)	Simpler and faster. Sends datagrams without connection or error control.	Low latencyIdeal for real-timetransmissions	Used for PV retrieval (via broadcast) and real-time data streaming where speed matters most.
SNMP (Simple Network Management Protocol)	Application layer protocol for monitoring and controlling network devices using a manager/agent model.	Standardized datacollectionRemote monitoring and control	Used to monitor network component performance and health in EPICS systems.

Other Protocols: Telnet, VSTFTP

NOTE: useful protocols & tools for laboratories!

► Telnet:

- ▶ Telnet is a **client-server application protocol** that allows bidirectional communication between two devices over a virtual terminal connection. It enables users to remotely access and manage devices or systems on a network
- ▶ It operates over TCP/IP and provides a command-line interface for managing network devices
- ▶ Telnet can be used for configuring and troubleshooting network equipment, though it is generally being replaced by more secure alternatives like SSH
- Telnet is often used to connect to an IOC shell running on a VxWorks box, facilitating remote management and control

▶ VSFTP (Very Secoure File Transfer Protocol):

- vsftpd is a secure and fast FTP server for Unix-like systems
- vsftpd is often used for securely transferring files, including configuration files and updates.
- In EPICS, <u>vsftpd can be utilized for device setup and configuration due to its robust security features, and for uploading a VxWorks OS at boot time on older CPUs.</u>

Human-Machine Interface in EPICS

CONTROL THROUGH EFFECTIVE USER INTERFACES

Role of HMI in Control Systems

Importance of user-Friendly Interface:

- Facilitate operator interaction with control systems
- Enhance situational awareness and decision-making
- Improve efficiency and reduce errors in system operation

Functions of HMI:

- Display real-time data and system status
- Provide control and command interfaces
- Alarm and event management

Designing Effective HMIs

- Best Practices for HMI Design:
 - ▶ Keep the interface simple and intuitive
 - Use consistent design elements and color schemes
 - Prioritize critical information and minimize clutter
 - Provide clear and concise feedback to user actions
 - ▶ Ensure the interface is responsive and performs well under load
 - ▶ Engage the end user (scientist, operator, etc.) in the design process

Designing Effective HMIs

- Tools and Software for HMI Development in EPICS:
 - CSS (Control System Studio) and CSS Phoebus: comprehensive suite for creating EPICS HMIs (more than a simple GUI tool)
 - ▶ MEDM (Motif Editor and Display Manager): An older tool, but still widely used for creating EPICS displays
 - PyQt and PyDM: Modern frameworks for developing cross-platform HMIs using QT libraries

CSS

MEDM

Maurizio Montis Mastering EPICS

HMI Integration with EPICS

Examples of Effective HMI Implementations:

- Synoptic Displays:
 - ▶ Show a high-level overview of the system
 - ▶ Allow operators to drill down into detailed views
- Control Panels:
 - Offer intuitive control and command interfaces
 - Include interactive elements for real-time adjustments
- ▶ (Dedicated) Alarm Management Interfaces:
 - Provide real-time alerts and status updates
 - ▶ Enable quick identification and resolution of issues

Synoptic Displays

Control Panels

IT Architecture for EPICS

BUILDING SCALABLE AND ROBUST INFRASTRUCTURE

Overview of IT Architecture for Control Systems

Components of IT Architecture:

- Network Infrastructure
- Servers
- Data Storage Solutions
- Database Systems

Importance of Scalable and Robust IT Infrastructure

- ▶ Ensures reliable and efficient operation of control systems
- Facilitates easy expansion and adaptability to future requirements

Server Infrastructure

- Type of Servers:
 - Web Servers: Designed to serve HTTP Content
 - Application Servers: Run application software and services; can also serve HTTP Content but is not limited to just HTTP (i.e. Remote Method Invocation (RMI), Remote Procedure Call (RPC))
 - Database Servers: Store and manage databases
- Key Concept: High Availability Redundant systems and failover mechanisms to ensure continuous operation

Server Infrastructure

To avoid BareMetal servers' proliferation:

- Virtualization Technology: Running multiple virtual machines on a single physical server
 - Possible tools: VMware, KVM, Hyper-V
 - Benefits: Resource optimization, isolation, ease of management
- Containerization Technology: Packaging applications with their dependencies in isolated containers
 - Possible tools: Docker, Podman, Kubernetes
 - Benefits: Portability, scalability, fast deployment

Data Storage Solutions

- Type of storage:
 - SAN (Storage area Network)
 - ▶ High-speed network that provides block-level storage
 - NAS (Network Attached Storage)
 - ▶ File-level storage connected to a network
 - ▶ Cloud Storage
 - ▶ Scalable, on-demand storage managed by third-party providers

VAS

Cloud

Database Management

Type of Databases:

- ▶ SQL / RDB Databases:
 - Relational databases that use structured query language (SQL) to manage data.
 - **Examples:** MySQL, PopstgreSQL, Oracle, Microsoft SQL Server
 - Advantages: Strong consistency, complex queries, and transactions
 - ▶ **Use Cases:** Suitable for applications requiring complex queries and transactions
- ► NoSQL / NoRDB Databases:

Non-relational databases designed to handle large volumes of unstructured or semistructured data.

- **Examples**: MongoDB, Cassandra, CouchDB, Redis
- ▶ Advantages: High scalability, flexible schema design, better performance for specific use cases
- Use Cases: Ideal for applications requiring high availability and scalability, such as big data analytics that require flexible storage solution

Note: different EPICS applications and tools can require RDB or NoRDB databases. Therefore, their knowledge is important to proper configure the services

Bonus Topic

... MAYBE

Documentation (not only in EPICS)

ENSURING QUALITY AND CONSISTENCY

... AKA THE HARDEST PART OF THE JOB

Importance of Documentation

User Manual:

- Guides for end-users to operate the system
- Include step-by-step instructions and troubleshooting tips

▶ Technical Documentation:

- Detailed technical specifications and system architecture
- Targeted at developers and engineers for system maintenance and upgrades

Operational Procedure:

- Standard operating procedures (SOPs) for daily operations
- Include safety protocols and emergency procedures

Wiki:

- Collaborative platform for storing and sharing documentation
- Allows for continuous updates and community contributions

Strategies for Keeping Documentation Updated

- Regular reviews and updates
- Assign responsibility for documentation management
- Implement review and approval processes
- Encourage user feedback and contributions
- Don't forget to comment the code, but don't use it as principal (and exhaustive) documentation

YES!! (Probably) The hardest part of the job!!

Versioning with Git

- Tracks changes to documentation over time
- Facilitates collaboration among multiple contributors
- Allows for rollbacks to previous versions if needed
- Provides a clear history of changes and updates

Key Features of Git:

- Distributed version control system
- Branching and merging for managing different versions
- Commit history for tracking changes
- Git repositories (e.g., GitHub, GitLab, Bitbucket) for hosting and sharing documentation

Git is a tool every Control System Engineer must know!

Conclusion about Documentation

- Documentation is crucial for (EPICS) control systems
 - ► For end users
 - For maintainers
- Effective documentation ensures usability and maintenance
- Using tools like Git helps manage and maintain documentation

Thank You for Your Attention