
Introduction to GPU Usage
HIP Winter School 2021
Computational Science Department · Dr. Guido Juckeland · g.Juckeland@hzdr.de · www.hzdr.de/fwcc

Change slide layout in the menu

Content of the Day

Goal for the day:
§ You are able to program parallel GPU accelerated applications yourself
§ You have a basic understanding of performance considerations and common

error messages

Topics covered:
§ Basic concepts of GPU parallel programming
§ Introduction to CUDA and related techniques for using GPUs

§ Data transfers
§ Kernel generation
§ Device data managemetn

§ Basic techniques for high performing GPU codes

Introduction to GPU Usage - HIP Winter School 20212

What can you expect?

2021-12-02

Change slide layout in the menu

Content of the Day

Turn to the common pad at
https://notes.desy.de/eP0TXBEdQG6UebrLlBGKGQ?both

Answer the following two questions:
§ When did you last use a GPU?
§ What do you expect from the day?

Introduction to GPU Usage - HIP Winter School 20213

What do you know / expect?

2021-12-02

https://notes.desy.de/eP0TXBEdQG6UebrLlBGKGQ?both

Let’s get started…
Parallelism or why GPUs?

Parallelism is Everywhere

Parallelism occurs whenever multiple agents work
together in solving a larger problem. You use it

when one agent cannot solve the problem in time.

Introduction to GPU Usage - HIP Winter School 2021

Change slide layout in the menu

Parallel Computing

Take a large computational problem
Break it into smaller parts
Solve the parts concurrently

If necessary:
§ Communicate partial results
§ Repeat until solution is reached

Introduction to GPU Usage - HIP Winter School 20216 2021-12-02

Change slide layout in the menu

Types of Parallelism

Introduction to GPU Usage - HIP Winter School 2021

Bit-wise
parallelism

Instruction
level

parallelism

Data
parallelism

Task
parallelism

7 2021-12-02

Change slide layout in the menu

Task Parallelism

Performs (sub-)tasks on sets of data (concurrently = in parallel, if possible)
§ Example application:

Video processing
§ Agent 1: Load frames
§ Agent 2: Remove blur
§ Agent 3: Adjust colors,…
§ …

Agent = Thread or process
Task parallelism usually does not scale with the problem size
Load-balancing and synchronization are important
Multi-core CPUs are often a good choice for task parallel applications
On a coarse-grained level (low communication), GPUs also can handle it
well, but their main talent is data parallelism

Introduction to GPU Usage - HIP Winter School 2021

Agent 1 Agent 2 Agent 3

Frame 1

Frame 1

Frame 1

Frame 2

Frame 3 Frame 2

Pipeline parallelism
(special form of task parallelism)

... ...
...

8 2021-12-02

Change slide layout in the menu

Data Parallelism

Performs the same task on different data
§ Example: Video processing
§ Agent 1: works on top left corner
§ Agent 2: works on top right corner
§ Agent 3: works on bottom left corner
§ …

Agent = Thread or process
Works well on CPUs and GPUs
Requires dividable data

Introduction to GPU Usage - HIP Winter School 2021

Agent 1 Agent 2

Agent 3 Agent 4

9 2021-12-02

Change slide layout in the menu

Parallelization

Porting or refactoring a code to run parallel on GPUs is usually no easy task
•Find hotspots and embarassingly1 parallel-enabled portions
• exploit data parallelism and SIMD programming model
•If serial part of the algorithm is too high, then parallelization does not help
much

• Amdahl‘s Law: 𝑆 = !
!"# $!"

S – theoretical speedup
N – number of processors
P – parallel portion

Introduction to GPU Usage - HIP Winter School 2021

Daniels220 CC 3.0, wiki
10 2021-12-02

https://commons.wikimedia.org/w/index.php?curid=6678551

Change slide layout in the menu

Top 500 (June 2021)

Introduction to GPU Usage - HIP Winter School 2021

Site System Cores
Rmax

(TFlop/s)
Rpeak

(TFlop/s) Power (kW)

1 Japan Fugaku, A64FX, Fujitsu 7,630,848 442,010.0 537,212.0 29,899

2 United States
Summit, AC922, IBM Power9
(NVIDIA GV100) 2,414,592 148,600.0 200,794.9 10,096

3 United States
Sierra, IBM Power9
(NVIDIA GV100) 1,572,480 94,640.0 125,712.0 7,438

4 China Sunway, SW26010 10,649,600 93,014.6 125,435.9 15,371

5 United States
Permutter, AMD EPYC
(NVIDIA A100) 706,304 64,590.0 89,794.5 2,528

6 United States
Selene, NVIDIA DGX SuperPOD,
AMD EPYC (NVIDIA A100) 555,520 63,460.0 79,215.0 2,646

7 China
Tianhe-2A
(NUDT Matrix-2000) 4,981,760 61,444.5 100,678.7 18,482

8 Germany
JUWELS Booster, AMD EPYC
(NVIDIA A100) 449,280 44,120.0 70,980.0 1,764

9 Italy
HPC5, Dell + Intel Xeon,
(NVIDIA V100) 669,760 35,450.0 51,720.8 2,252

10 United States Frontera, Dell + Intel Xeon 448,448 23,516.4 38,745.9 N/A

Top500

11 2021-12-02

https://www.top500.org/lists/2017/06/

Change slide layout in the menu

Parallel C++ APIs (Incomplete)

Introduction to GPU Usage - HIP Winter School 2021

CPU GPU (NVIDIA) GPU (AMD) FPGA
CUDA - x - -

HCC x - x -

OpenCL x x x x

HIP x x (via nvcc) x (via hcc/clang) -

SYCL x x (experimental) x (prototype) x

OpenGL
Direct3D
Vulkan

- x x -

OpenMP4/5 x x x x

OpenACC
(GCC, NVIDIA)

x x x o, o

MPI x GPU transfers if MPI is
CUDA-aware

- -

2021-12-0212

https://gpuopen.com/compute-product/hcc-heterogeneous-compute-compiler/
https://github.com/illuhad/hipSYCL
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.phoronix.com/scan.php?page=news_item&px=HardCloud-OpenMP-FPGAs
https://stackoverflow.com/questions/44283009/openacc-compiling-with-amd-gpus
https://www.phoronix.com/scan.php?page=news_item&px=CodeSourcery-AMD-GCN

Change slide layout in the menu

Parallel Hardware Examples (Incomplete)

Introduction to GPU Usage - HIP Winter School 2021

Nvidia | GTX | Tesla | SoC
Kepler | 680 | K80 | Tegra K1
Maxwell| 980 | M40 | Tegra X1
Pascal | 1080 | P100 | Tegra X2
Volta |(Titan)| V100 | Xavier
Turing | 2080 | - | Orin?
Ampere | 3080 | A100 | Orin?

AMD | Gaming | Pro (W+S) | MI
GCN 1st | HD 7970 | FirePro W2100 |
GCN 2nd | HD 8770 | FirePro W4200 |
GCN 3rd | R9 285 | FirePro S7150 | MI8
GCN 4th | RX 480 | RadeonPro 580 | MI6
GCN 5th | RX Vega64| RadeonPro SSG | MI25,..
RDNA | RX 5700 | ? | MI100

2021-12-0213

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units

Change slide layout in the menu

Some Accelerator Cards

Introduction to GPU Usage - HIP Winter School 2021

Radeon Pro SSG (Vega)
(2017)

Intel Xeon Phi 7120P
(2013)

Nvidia Tesla V100 (Volta)
(2017)

Nvidia Tegra X2 (Pascal)
(2016)

Radeon Embedded
E9550 MXM (Polaris)

(2016)

… semi-custom AMD
GPUs (2017)

Altera Stratix 10 FPGA
(2013)

Google TPU
(2017)

2021-12-0214

Moving in…
Getting data onto and off the GPU

Change slide layout in the menu

GPU System Setup

Application Subprogram/
Kernel

Device
Librarycalls invokes

Host Device

CPU CPU

DRAM

GDRAM

GPU

PCIe

DMA Transfer

Hardware
Software

• CUDA assumes a system with a host and a device with own memory each

2021-12-02 Introduction to GPU Usage - HIP Winter School 202116

Change slide layout in the menu

Defining the Terms HOST and DEVICE

Introduction to GPU Usage - HIP Winter School 2021

HOST
DEVICE

2021-12-0217

Change slide layout in the menu

CUDA: Allocating and Freeing Memory on the
Device

int main(void) {

float *device_pointer; //Pointer to float element

// The following line allocates memory for one float on the GPU and

// sets device pointer to the beginning of that memory area

cudaMalloc(&device_pointer, sizeof(float));

// The following line releases the allocated GPU memory for
// device_pointer so that it may be used again by another allocation

cudaFree(device_pointer);

return 0;

}
Introduction to GPU Usage - HIP Winter School 20212021-12-0218

Change slide layout in the menu

Data Transfers (1)

Introduction to GPU Usage - HIP Winter School 2021

HostToDevice

HOST
DEVICE

2021-12-0219

Change slide layout in the menu

Data Transfer from HOST to DEVICE

#define NELEMENTS 16

int main(void) {
float hostvariable[NELEMENTS]; //float-array on the HOST
float *device_pointer; //allocated pointer to the DEVICE
cudaMalloc(&device_pointer, NELEMENTS*sizeof(float));
cudaMemcpy(device_pointer, //Pointer to DEVICE memory (dest.)

hostvariable, //Pointer to host memory (source)
NELEMENTS*sizeof(float), //number of bytes to transfer

cudaMemcpyHostToDevice); //direction of transfer
cudaFree(device_pointer);
return 0;

}

Introduction to GPU Usage - HIP Winter School 20212021-12-0220

Change slide layout in the menu

HOST
DEVICE

Data Transfers (2)

Introduction to GPU Usage - HIP Winter School 2021

DeviceToHost

2021-12-0221

Change slide layout in the menu

Data Transfers from DEVICE to HOST

#define NELEMENTS 16

int main(void) {
float hostvariable[NELEMENTS]; //float-array on the HOST

float *device_pointer; //allocated pointer to the DEVICE
cudaMalloc(&device_pointer, NELEMENTS*sizeof(float));

cudaMemcpy(hostvariable, //Pointer to HOST memory (dest.)

device_pointer, //Pointer to DEVICE memory (source)

NELEMENTS*sizeof(float), //number of bytes to transfer
cudaMemcpyDeviceToHost); //direction of transfer

cudaFree(device_pointer);

return 0;
}

Introduction to GPU Usage - HIP Winter School 20212021-12-0222

Change slide layout in the menu

There is more than one copy operation available

cudaMemcpy
cudaMemcpy2D
cudaMemcpy2DArrayToArray
cudaMemcpy2DAsync
cudaMemcpy2DFromArray
cudaMemcpy2DFromArrayAsync
cudaMemcpy2DToArray
cudaMemcpy2DToArrayAsync
cudaMemcpy3D
cudaMemcpy3DAsync
cudaMemcpy3DPeer
cudaMemcpy3DPeerAsync
cudaMemcpyAsync

cudaMemcpyPeer
cudaMemcpyPeerAsync
cudaMemcpyArrayToArray
cudaMemcpyFromArray
cudaMemcpyFromArrayAsync
cudaMemcpyToArray
cudaMemcpyToArrayAsync
cudaMemcpyFromSymbol
cudaMemcpyFromSymbolAsync
cudaMemcpyToSymbol
cudaMemcpyToSymbolAsync

Introduction to GPU Usage - HIP Winter School 20212021-12-0223

Change slide layout in the menu

Possible transfer directions

cudaMemcpyHostToDevice à Transfers data from host to device

cudaMemcpyDeviceToDevice à Transfers data on the device

cudaMemcpyDeviceToHost à Transfers data from device to host

cudaMemcpyHostToHost à Transfers data on the host

cudaMemcpyDefault à Detects by memory address
requires Unified Virtual Addressing (UVA)

Introduction to GPU Usage - HIP Winter School 20212021-12-0224

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__UNIFIED.html

Change slide layout in the menu

Catching errors with cudaError_t

CUDA functions return a value of type cudaError_t:
typedef enum cudaError cudaError_t

Values can be for instance:

Introduction to GPU Usage - HIP Winter School 2021

cudaSuccess The API call returned with no errors. In the case of query calls, this can
also mean that the operation being queried is complete (see
cudaEventQuery() and cudaStreamQuery()).

cudaErrorMemoryAllocation The API call failed because it was unable to allocate enough memory to
perform the requested operation.

cudaErrorInitializationError The API call failed because the CUDA driver and runtime could not be
initialized.

cudaErrorLaunchFailure An exception occurred on the device while executing a kernel. Common
causes include dereferencing an invalid device pointer and accessing out of
bounds shared memory.

… …

2021-12-0225

Change slide layout in the menu

Automatic Error Interpretation

In order to interpret cudaError_t one can use the following function

const char* cudaGetErrorString(cudaError_t error)

Example:
cudaError_t error = cudaGetLastError();
printf("CUDA error: %s\n", cudaGetErrorString(error));

Introduction to GPU Usage - HIP Winter School 20212021-12-0226

Change slide layout in the menu

Catch and Handle Errors by Default

#define HANDLE_ERROR(err) \
(handleCudaError(err, __FILE__, __LINE__))

static void handleCudaError(cudaError_t err, const char *file, int line) {

if (err != cudaSuccess) {
printf("%s in %s at line %d\n“, cudaGetErrorString(err), file, line);
exit(EXIT_FAILURE);

}
}

•Prepend all CUDA calls with HANDLE_ERROR, e.g.:
HANDLE_ERROR(cudaMalloc(&devicepointer, sizeof(float)));

•Always check kernel launch:
mykernel<<<1,1>>>();
HANDLE_ERROR(cudaGetLastError());

Introduction to GPU Usage - HIP Winter School 20212021-12-0227

Tool time
How to get this going

Change slide layout in the menu

CUDA Developer Tools

https://developer.nvidia.com/debugging-solutions
https://developer.nvidia.com/gameworks-tools-overview

https://developer.nvidia.com/develop4tegra

• IDE
• Nsight Eclipse / Visual Studio (Linux/Mac / Windows)

• also for Android: Nsight Tegra (Eclipse / Visual Studio)
• comes with integrated debugging and analysis tools

• Standalone Performance Tools (CUDA >=10)
• Nsight Systems - System-wide application algorithm tuning
• Nsight Compute - Debug/optimize specific CUDA kernel
• Nsight Graphics - Debug/optimize specific graphics shader

• Classic Tools Set
• CUDA compiler nvcc
• Memory & Race Checker cuda-memcheck
• Built-in profiler nvprof (nsys --stats=true Pascal and later)
• Visual Profiler nvvp
• Debugger cuda-gdb

2021-12-02 Introduction to GPU Usage - HIP Winter School 202129

https://developer.nvidia.com/debugging-solutions
https://developer.nvidia.com/gameworks-tools-overview
https://developer.nvidia.com/develop4tegra

Change slide layout in the menu

Compile and Run a CUDA Program

• On remote systems make sure that the CUDA environment is available (usually
requires a module load cuda or similar)

• Name your CUDA files with the suffix .cu
• Compile your program using nvcc (e.g. nvcc myprogram.cu)
• Execute your program by running ./a.out
• On remote systems the node you compile on might not feature a GPU, you will

have to use a batch system to access node with GPUs
• nvcc supports some host compiler flags, otherwise use -Xcompiler to

forward to host compiler, e.g. -Xcompiler -fopenmp

• Debugging flags
§ -g: include host debugging symbols
§ -G: include device debugging symbols (turns off optimizations!)
§ -lineinfo: include line information with symbols (also for profiling)

Introduction to GPU Usage - HIP Winter School 2021

nvcc doc
2021-12-0230

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

Change slide layout in the menu

The Five Basic CUDA Functions

• cudaMalloc to allocate memory on the device
• cudaMemcpy to transfer data to and from the device
• Kernel invocations
• Handling errors
• cudaFree to release allocated memory on the device

Introduction to GPU Usage - HIP Winter School 20212021-12-0231

Change slide layout in the menu

The Five Results of CUDA Programming

• Compiler error
• Program crashes
• Program produces wrong results
• Program runs very slow
• Program runs fast and correct

Introduction to GPU Usage - HIP Winter School 2021

Likeliness

2021-12-0232

Change slide layout in the menu

(Five) Recommendations

• Use comments
• Implement error handling
• Test for correctness
• Use expressive names for functions and variables, e.g. put a “_d” and a “_h” as

a suffix to now data locality
• Use building blocks where possible (libraries, function reuse, etc.)

Introduction to GPU Usage - HIP Winter School 20212021-12-0233

Change slide layout in the menu

Further Reading

CUDA programming guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
Books:

Introduction to GPU Usage - HIP Winter School 2021

Professional
CUDA C Programming

2014

The CUDA Handbook
2013

Programming Massively
Parallel Processors

2016
(3. Auflage)

… Advanced …

2021-12-0234

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://katalogbeta.slub-dresden.de/id/0014690130/
https://katalogbeta.slub-dresden.de/id/0014690130/
https://katalogbeta.slub-dresden.de/id/0008949743/
https://katalogbeta.slub-dresden.de/id/0019919035/
https://katalogbeta.slub-dresden.de/id/0019919035/

Lab 1
à In the pad

Getting into it…
Kernels, threads and blocks

Change slide layout in the menu

Recap: GPU System Setup

Application Subprogram/
Kernel

Device
Librarycalls invokes

Host Device

CPU CPU

DRAM

GDRAM

GPU

PCIe

DMA Transfer

Hardware
Software

• CUDA assumes a system with a host and a device with own memory each

2021-12-02 Introduction to GPU Usage - HIP Winter School 202137

Change slide layout in the menu

Kernels

A (device) kernel is a piece of a program that will be compiled for being executed
on the GPU.
Kernels are invoked by the host on the device
Kernel launches are asynchronous on the host (in CUDA and OpenCL)
Limited C++11/14 support in kernels, see CUDA8 and CUDA9 features

int main(void) {
// …

kernel1<<<…,…>>>(…);
kernel2<<<…,…>>>(…);
kernel3<<<…,…>>>(…);

// …
return 0;

}

2021-12-02 Introduction to GPU Usage - HIP Winter School 202138

https://devblogs.nvidia.com/parallelforall/new-compiler-features-cuda-8/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Change slide layout in the menu

(Host-)Synchronous Execution

Synchronous operations wait until the device activity is completed

time

Host

Device

cudaMemcpy

Transfer Data

2021-12-02 Introduction to GPU Usage - HIP Winter School 202139

Change slide layout in the menu

Host

Device

Asynchronous Execution

• Asynchronous device activities are launched by the CPU without blocking its
execution

• The host needs to request the execution status of the device to explicitly
synchronize with it

time

launch synchronize

kernel

Device Stream
Execution Queue

kernel

2021-12-02 Introduction to GPU Usage - HIP Winter School 202140

Change slide layout in the menu

Kernel Declaration

• Kernels are declared like “normal” functions of return type void and prepended
by the key word __global__
Example:
__global__ void do_nothing(float *data){ … }

• Since kernels are launched asynchronously they cannot return a value
• Kernels can invoke device functions

__device__ float help_do_nothing() { … }

• Kernels can run concurrently
kernel1<<<…,…>>>(…); // generates many parallel threads
kernel2<<<…,…>>>(…); // generates many parallel threads
kernel3<<<…,…>>>(…); // generates many parallel threads

2021-12-02 Introduction to GPU Usage - HIP Winter School 202141

Change slide layout in the menu

Where is the parallelism?

• A kernel function is the code to be executed on the device side
• A kernel defines the computation & data access of a single thread
• Many CUDA threads perform the same computation in parallel
• CUDA uses a relaxed, more expressive SIMD programming model:

=> SIMT (Single Instruction, Multiple Threads)
• SIMT is hybrid of SIMD and SMT

• SIMT allows multiple register sets, addresses and flow paths
• SIMT uses scalar spelling, ie.:

int idx = /* compute global thread id */;
a[idx] = b[idx]+c[idx];

Efficiency Flexibility
SIMD SIMT SMT

Single Instruction, Multiple Data Simultaneous Multi-Threading

2021-12-02 Introduction to GPU Usage - HIP Winter School 202142

Change slide layout in the menu

Where is the parallelism?

__global__ void add(float *a, float *b, float *c) {
int i = /* compute global thread id */;
a[i]=b[i]+c[i]; //no loop!

} …
add<<<…,…>>>(a_dev, b_dev, c_dev);

Thread 0

a[0] = b[0]+c[0];
Thread 1

a[1]=b[1]+c[1];

Thread i

a[i]=b[i]+c[i];

2021-12-02 Introduction to GPU Usage - HIP Winter School 202143

Change slide layout in the menu

Thread Divergence

When threads do different things, the runtime of the threads can vary.

__global__ void diverge(void *data) {
if (data[mythread] > random_number)

do_a_whole_lot();
else

do_nothing();
} Thread x

do_a_whole_lot

Thread y
Do_nothing

ru
nt

im
e

The kernel diverge runs
until the last thread is
finished.

If thread x and y are in a SIMT group,
different execution paths become

serialized as well

2021-12-02 Introduction to GPU Usage - HIP Winter School 202144

Change slide layout in the menu

Nvidia Ampere Architecture

Introduction to GPU Usage - HIP Winter School 2021

Tesla A100 (2020)
• 108 SMs (128 SMs on chip)
• 6912 FP32 + 6912 INT

+ 3456 FP64 cores
@ 1410 MHz (Boost)

• 78/ 19.5 / 9.7 TFLOPs
(FP16 / FP32/FP64)

• 40/80 GB 5120-bit HBM2
• 7nm fabric, 54.2B transistors
• $15000

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf

https://www.anandtech.com/show/11367/nvidia-volta-unveiled-gv100-gpu-and-tesla-v100-accelerator-announced
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

Change slide layout in the menu

Streaming Multiprocessor (Pascal)

https://devblogs.nvidia.com/parallelforall/inside-pascal/

With CUDA there is a two-
level thread hierarchy
decomposed into blocks of
threads and grids of blocks.

Threads are grouped in
blocks which are executed
on one Streaming
Multiprocessor (SM).

They can cooperate using a
(small) shared memory.
Threads from different
blocks cannot cooperate
directly.

Thread 0

*elem = 0.0f;

Thread 1

*elem = 0.0f;

2021-12-02 Introduction to GPU Usage - HIP Winter School 202146

https://devblogs.nvidia.com/parallelforall/inside-pascal/

Change slide layout in the menu

Thread Blocks

• Arrangement of threads is called thread block
• Threads are executed in SIMD fashion in groups of 32 threads, which are

called warps
§ warp size may change in the future

• Order of warp execution is not fixed and can vary
• Synchronization by __syncthreads()

//integers nx, ny, nz describe the block in 3D

dim3 block(nx, ny, nz);
//creates nx*ny*nz threads in 1 block

kernel<<<1,block>>>(…);
// block size can also be a number for 1D

kernel<<<1,512>>>(…);

2021-12-02 Introduction to GPU Usage - HIP Winter School 202147

Change slide layout in the menu

The dim3 Data Structure

Create with just assigning a variable, unused dimensions are set to 1

struct dim3
{

unsigned int x, y, z;
};

2021-12-02 Introduction to GPU Usage - HIP Winter School 202148

Change slide layout in the menu

Threads in a Block

dim3 block(4,2,3);
kernel<<<1,block>>>(…);

(0,1,0)

(0,0,0)

(1,1,0)

(1,0,0)

(2,1,0)

(2,0,0)

(3,1,0)

(3,0,0)

x

y

z

(0,0,1) (1,0,1) (2,0,1) (3,0,1)
(0,0,2) (1,0,2) (2,0,2) (3,0,2)

(3,1,2)
(3,1,1)

2021-12-02 Introduction to GPU Usage - HIP Winter School 202149

Change slide layout in the menu

New Threads on the Block

__global__ void kernel(void *data) {
int tidx = threadIdx.x; //position of threads within block x
int tidy = threadIdx.y; //position of threads within block y
int tidz = threadIdx.z; //position of threads within block z

}

dim3 block(4,2,3);
kernel<<<1,block>>>(data);

Calls a kernel with 24 = 4*2*3 threads
(threadIdx.x, threadIdx.y, threadIdx.z):
(0,0,0),(1,0,0),(2,0,0),(3,0,0),(0,1,0),(1,1,0),(2,1,0),(3,1,0),
(0,0,1),(1,0,1),(2,0,1),(3,0,1),(0,1,1),(1,1,1),(2,1,1),(3,1,1),
(0,0,2),(1,0,2),(2,0,2),(3,0,2),(0,1,2),(1,1,2),(2,1,2),(3,1,2)

2021-12-02 Introduction to GPU Usage - HIP Winter School 202150

Change slide layout in the menu

Block Size Restrictions

• Total number of threads in a block is the product of the number of threads in
each dimension

• Total number of threads and threads per dimension have limits

CUDA Compute
Capability 2.x 3.x 5.x 6.x 7.0 8.0

Micro Architecture Fermi* Kepler+ Maxwell Pascal Volta Ampere

Max. block size in x,y 1024

Max. block size in z 64

Max. threads per block 1024

Comprehensive tables of device properties: https://en.wikipedia.org/wiki/CUDA

* Fermi is deprecated as of CUDA8 and without compiler support as of CUDA9
+ Kepler is deprecated as of CUDA10 and without compiler support as of CUDA11

2021-12-02 Introduction to GPU Usage - HIP Winter School 202151

https://en.wikipedia.org/wiki/CUDA

Change slide layout in the menu

Multiple Thread Blocks (a.k.a. Grid of Blocks)

• Arrangement of blocks is called grid
• Order of block execution is not fixed
• Multiple blocks can reside on one multiprocessor

(as long as resources are available)
• No synchronization between blocks
• Blocks are distributed over all multiprocessors
//integers mx, my, mz describe the grid in 3D
dim3 grid(mx, my, mz);
dim3 block(512);
//creates mx*my*mz blocks

kernel<<<grid,block>>>(…);
// grid size can also be a number

kernel<<<1024,512>>>(…);

CC 4.0 by Atshardul
2021-12-02 Introduction to GPU Usage - HIP Winter School 202152

https://en.wikipedia.org/wiki/Thread_block

Change slide layout in the menu

Thread + Block Mapping

Block 0

Thread 0 Thread 1

Thread 2 Thread 3

Thread 4 Thread 5

Thread 6 Thread 7

Thread 8 Thread 9

Block 1

Thread 10 Thread 11

Thread 12 Thread 13

Thread 14 Thread 15

Thread 16 Thread 17

Thread 18 Thread 19

2021-12-02 Introduction to GPU Usage - HIP Winter School 202153

Change slide layout in the menu

Transparent Scalability

Professional CUDA Programming

• Each block can execute in any order relative to others
• Threads are assigned to SMs in block granularity

• SM maintains thread/block idx‘s
• SM manages/schedules thread execution
• SM implements zero-overhead warp scheduling

• Hardware is free to assign blocks to any processors at any time
• A kernel scales to any number of parallel processors

2021-12-02 Introduction to GPU Usage - HIP Winter School 202154

https://katalogbeta.slub-dresden.de/id/0019919035/

Change slide layout in the menu

Grid Size Restrictions

• Total number of blocks in a grid is the product of the number of blocks in each
dimension

• Total number of blocks and blocks per dimension have limits
• Gives a kernel launch error if launch configuration is invalid (check by

cudaGetLastError)

CUDA Compute Capability 2.x 3.x 5.x 6.x 7.0 8.0

Micro Architecture Fermi* Kepler Maxwell Pascal Volta Ampere

Max. grid size in x 231-1

Max. grid size in y or z 65535

Max. resident blocks per SM 16 32

Max. resident threads per SM 2048

2021-12-02 Introduction to GPU Usage - HIP Winter School 202155

Change slide layout in the menu

IDs with Blocks and Grids

blockIdx.x
0

grid

blockIdx.x
1

blockIdx.x
2

…

blockIdx.x
65534

threadIdx.x
0

threadIdx.x
1

threadIdx.x
2

…

threadIdx.x
0

threadIdx.x
1

threadIdx.x
2

…

threadIdx.x
0

threadIdx.x
1

threadIdx.x
2

…

threadIdx.x
0

threadIdx.x
1

threadIdx.x
2

…

threadIdx.x
0

threadIdx.x
1

threadIdx.x
2

…

blocks

threadIdx.x
511

threadIdx.x
511

threadIdx.x
511

threadIdx.x
511

threadIdx.x
511

2021-12-02 Introduction to GPU Usage - HIP Winter School 202156

Change slide layout in the menu

Global Thread ID

• Threads need to decide on which data they need to work
• Requires ID and size queries

All variables are available in all three dimensions.
Examples:

1D grid of 1D block:
int idx = blockIdx.x * blockDim.x + threadIdx.x;

1D grid of 2D block:
int idx = blockIdx.x * blockDim.x * blockDim.y
+ threadIdx.y * blockDim.x + threadIdx.x;

Type ID Size
Thread threadIdx -
Block blockIdx blockDim
Grid - gridDim

2021-12-02 Introduction to GPU Usage - HIP Winter School 202157

Change slide layout in the menu

Global Thread ID (Example 1D Block)
grid

blockIdx.x
0

blockIdx.x
1

blockIdx.x
2

blockIdx.x
3

threadIdx.x
0

threadIdx.x
1

…

tid=0 tid=1 tid=2 …

tid=512 tid=513 tid=514 …

tid=1024 tid=1025 tid=1026 …

tid=1536 tid=1537 tid=1538 …

blocks
threadIdx.x

511

tid=511

tid=1023

tid=1535

tid=2047

tid = threadIdx.x + blockIdx.x * blockDim.x;

threadIdx.x
2

2021-12-02 Introduction to GPU Usage - HIP Winter School 202158

Change slide layout in the menu

Global Thread ID (3D Block)

__global__ void settozero(float *elem) {
int tid = threadIdx.x +

threadIdx.y * blockDim.x +
threadIdx.z * blockDim.x * blockDim.y;

elem[tid] = 0.0f;
}

int main(int argc, char *argv[]) {
…
dim3 block3d(32, 2, 2); // 32x2x2 thread block
dim3 grid1d(16); // 1D grid of 16 3D thread blocks
settozero<<<grid1d, block3d>>>(elem_d);

…
}

Side note: flat index (tid=…) may cause non-coalesced memory access
(we will come back to it later on)

2021-12-02 Introduction to GPU Usage - HIP Winter School 202159

Change slide layout in the menu

Monolithic Kernels

Rule of thumb: every thread creates one output element
(assumes that there are enough threads to cover the entire array)
Example: Single Precision A*X + Y (SAXPY)
__global__ void saxpy(int N, float a, float *x, float *y) {

// who am I?
int i = threadIdx.x + blockIdx.x * blockDim.x;

// if I am inside the vector, work on my data
if (i < N) {
y[i] = a * x[i] + y[i];

}
}
// Perform SAXPY on 1M elements
saxpy<<<4096,256>>>(1000000, 2.0, x_d, y_d);

2021-12-02 Introduction to GPU Usage - HIP Winter School 202160

Change slide layout in the menu

Summary

• Kernel launch configuration requires grid and block dimension (1-3D)
• Kernel launches are always asynchronous
• Kernel functions have __global__ attribute and returns void
• Kernels are processed in SIMT and SPMD fashion
• Each 32 threads represent a SIMD group called warp (may change)
• Threads/Warps are separated into thread blocks
• Set of thread blocks is called a grid
• Kernel launch must be checked by cudaGetLastError

2021-12-02 Introduction to GPU Usage - HIP Winter School 202161

Lab 2
à In the pad

Location, location, location…
It’s all about memory

GCoE – Slide 64

Device

Host

Device and Host Memory

Journey to the GPU

2 GB/s
(DMI
2)

QP
I

MW70-3S0 (2016)

GPU 1

GPU 2

GPU 3

Spl
.

CPU 0 CPU 1

Southbridge /
PCH,

IDE, SATA, USB,
PCI, ..

4x
17 GB/s

25 GB/s

600 MB/s

16 GB/s

Ethernet
1 Gbit/s

InfiniBand
56 Gbit/s

Spl
.

1x SSD

DRAM

http://b2b.gigabyte.com/Server-Motherboard/MW70-3S0-rev-10

Change slide layout in the menu

Register Memory
(e.g. SRAM)

Shared Memory
(e.g. SRAM)

Global Memory
(e.g. HBM)

Size

Memory Hierarchy

Caches
(e.g. SRAM)

Disk Memory
(e.g. magnetic disk, flash drive)

Main Memory
(e.g. DRAM)

Change slide layout in the menu

Register Thread

What? Register is the memory for the ALUs, so it is on-chip and fast!
How? Declare a variable, e.g. int counter;

Who? A register is assigned to a single thread only
Scope? Lifetime of a thread
Access? Read+Write, thread-private
Problems? Affects occupancy and if a thread wants too many registers,

they become spilled out to local memory (slow)

Number of 32-bit registers per multiprocessor: 64k (except CC 3.7: 128k)

Memory Hierarchy - Register

Change slide layout in the menu Shared
Memory Thread 1 Thread 2 Thread 3 Thread 4

Thread 5 Thread 6 Thread 7 Thread 8

Maximum Shared Memory per Thread Block: 48 KB

Maximum Shared Memory per Multiprocessor: {48,64,96,112} KB

What? Fast as registers, on-chip memory, shared by threads
How? __shared__ float commondata[threadsPerBlock];

__shared__ float commondata*;
Who? All threads within a thread block
Scope? Lifetime of the thread block
Access? Read+Write
Problems? Affects occupancy, bank-conflict impacts performance,

some GPUs have bank width configurations (4byte, 8byte)

Thread Block

Memory Hierarchy – Shared Memory

Change slide layout in the menu Shared
Memory Thread 1 Thread 2 Thread 3 Thread 4

Thread 5 Thread 6 Thread 7 Thread 8

Maximum Shared Memory per Thread Block: 48 KB

Maximum Shared Memory per Multiprocessor: {48,64,96,112} KB
• Shared memory is divided into banks to achieve high bandwidth
• It services as many simultaneous accesses as it has banks
• Shared memory helps to reduce multiple loads of device data
• … conversion of data layout
• … communication within thread block

Thread Block

Memory Hierarchy – Shared Memory

Change slide layout in the menu

Memory Hierarchy – Shared Memory

• Static shared memory allocation:

__global__ void foo(){

__shared__ int a[256];

…
}

Creates an Integer Array a
with 256 elements in shared

memory for each thread
block

• Dynamic shared memory allocation:

__global__ void foo(){

extern __shared__ int a[];
…

}
Kernel launch configures shared memory size for each thread block:
foo<<< NBLOCKS, NTHREADS, NTHREADS*sizeof(int)>>>();

Change slide layout in the menu

Memory Hierarchy – Shared Memory

Fill the shared memory and sync‘ the threads:

__global__ void foo(int *g_data){

__shared__ int a[256];

int idx=… //get global index

…

// every thread copies one b to a

a[threadIdx.x] = g_data[idx];

// wait for all threads in a block

__syncthreads();

…

}

Change slide layout in the menu

Memory Hierarchy – Shared Memory

Typical workflow:

__global__ void foo(int *g_data){

__shared__ int a[256];

int idx=… //get global index

…

for(…) {

// copy reused data to shared memory

// sync

for() { /*compute*/ }

// sync

// write back to global memory

}

}

Change slide layout in the menu

Shared
Memory

Number of Shared Memory Banks: 32

32 bit word

• Equally sized memory modules, which can be accessed simultaneously

• Consecutive 32 bit words become stored consecutively (interleaving)

read
write

Shared Memory Banks

Change slide layout in the menu

Shared
Memory

Thread i

Thread j

conflict

read
write

Shared Memory Bank Conflict

Change slide layout in the menu

Thread i

Thread j

No
conflict for read

(broadcast)

read
write

Shared
Memory

Shared Memory Bank Conflict

Change slide layout in the menu

Thread i

Thread j

No conflict

read
write

Shared
Memory

Shared Memory Bank Conflict

Change slide layout in the menu

Size typically ranges from 4 up to 32 GB

What? memory to communicate data between multiprocessors and devices
How? __global__ float commondata[maxMem];
Who? All threads on the device, host, other GPUs (UVA)
Scope? Lifetime of application
Access? R+W
Problems? Bad alignment of data can slow down even further

Global
Memory

Thread 1 Thread 2

Thread 5 Thread 6

Thread 9 Thread 10

Thread 13 Thread 14

Memory Hierarchy – Global Memory

Change slide layout in the menu Memory (4 x 128 Byte)

Requested memory (1 x 128 Byte not aligned)

Transferred memory (2 x 128 Byte)

50% wasted

Memory Hierarchy – Global Memory Alignment

Change slide layout in the menu Memory (4 x 128 Byte)

Requested memory (1 x 128 Byte aligned)

Transferred memory (1 x 128 Byte)

2D data access
T* elem = (T*)((char*)Base + Row * pitch) +

Column

Base

pitch

Memory Hierarchy – Global Memory Alignment

Change slide layout in the menu

Create aligned memory by simply using cudaMalloc*

1D Array
§ cudaMalloc() start address is aligned

2D Array
§ cudaMallocPitch() start address of every row is aligned

(like multiple cudaMalloc‘s)

Memory Hierarchy – Global Memory Alignment

Change slide layout in the menu

Memory (16 x 4 Byte)

struct __align__(16) Bar {
float a;
float b;
float c; }
// sizeof(Bar) == 16

4 Byte padding

Memory (16 x 4 Byte)

struct Foo {
float a;
float b;
float c; }
// sizeof(Foo) == 12

Alignment of structures

Change slide layout in the menu

Local
Memory Thread

What? Thread-private Global Memory, usually cached by L1 and L2
How? __local__ int counter; int counter[n];
Who? Thread-private
Scope? Lifetime of thread
Access? R+W
Problems? Arrays/Structures are probably stored inefficiently (like AoS)
nvprof shows if local memory is used, or use nvcc flags for kernel stats
nvcc --resource-usage or nvcc -warn-lmem-usage

Size of Local Memory per thread: 512kB

• Register-spills

• non-uniform,
dynamic arrays

Local Memory: Hidden Global Memory

Change slide layout in the menu

What? Off-chip memory, own on-chip cache (8-10kB), broadcast (saves loads)
How? __constant__ float constants_d [N];

cudaMemcpyToSymbol(constants_d, constants_h, size);
Who? Device, host
Scope? Lifetime of application
Access? R (Host can write)
Problems? transactions become serialized if warp requests different words

Size of Constant Memory: 64kB

Constant

Memory

Thread 1 Thread 2

Thread 5 Thread 6

Thread 9 Thread 10

Thread 13 Thread 14

Constant Memory: Read-Only Device Memory

Change slide layout in the menu
Thread 1 Thread 2

Thread 5 Thread 6

Thread 9 Thread 10

Thread 13 Thread 14

What? Uses global memory and L2, own on-chip cache(12-48KB),
optimized for accesses with 2D spatial locality,
automatic data & index interpolation, boundary handling

How? … next page …
Who? Device, host
Scope? Lifetime of application
Access? R (Host can write) (device can write, if surfaces are used)
Problems? … next page …

Cached,
2D-optimized,

with hardware interpolation

addressed as
1D, 2D, or 3D arrays.

Texture
Memory

Size ranges from 4 up to 32 GB

Texture Memory: For The Nostalgic?

texture
fetch

surface
write

texel

Lab 3
à In the pad

Engage…
Making things go even faster

Change slide layout in the menu

Grid-Striding Loops

Rule of thumb: Use the C loop nest and change the step width
Example: Single Precision A*X + Y (SAXPY)
__global__ void saxpy(int N, float a, float *x, float *y) {

for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < N;
i += blockDim.x * gridDim.x) { //stride of the loop

y[i] = a * x[i] + y[i];
}

}
int numSMs;
cudaDeviceGetAttribute(&numSMs, cudaDevAttrMultiProcessorCount, devId);
// Perform SAXPY on 1M elements
saxpy<<<8*numSMs, 256>>>(1 << 20, 2.0, x_d, y_d);

https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-
flexible-kernels-grid-stride-loops/

device id
(0 = first visible CUDA device)Why 8? Max. resident threads/SM = 2048 = 8*256

(rule of thumb, optimal number depends on algorithm)

2021-12-02 Introduction to GPU Usage - HIP Winter School 202187

https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

Change slide layout in the menu

Grid-Striding Loops

• Loop over data with one grid-size at a time
• Allow to utilize multiprocessors on the device more balanced (number of blocks

should be a multiple of the number of available multiprocessors)
• Improve scalability, because the problem size does not depend on the grid size

that is supported by a device
• Easily enable to limit the block number to improve thread reuse (avoids thread

creation and destruction costs) and tune performance
• Enable easy debugging by switching to serial execution, e.g.

saxpy<<<1,1>>>(1<<20, 2.0, x_d, y_d);

• Improve readability (kernel code is more similar to the CPU code)
• Improve portability (libraries such as Hemi allow to write portable kernels)

https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-
flexible-kernels-grid-stride-loops/

2021-12-02 Introduction to GPU Usage - HIP Winter School 202188

https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

Change slide layout in the menu

Nvidia’s Compute Capability (CC)

•Defines set of GPU hardware and programming features
•CC is a version tag = <major>.<minor>, e.g. 3.7 for K80, where “3“
marks Kepler and “7“ the minor version within Kepler architecture
•Kernel codes designed for older CC still work on latest GPUs
(probably runs inefficiently)
•So Kepler code runs on Volta, but Volta code may not work on Kepler (if
you use Volta features like thread-independent scheduling)
•GPU generation and corresponding CUDA features must be known to
write good code

§ How much shared memory per block can be used?
§ How many blocks can be resident on an SM?
§ Is half-precision hardware available? ...

The CUDA wiki has a nice lookup matrix for the CC features.

https://en.wikipedia.org/wiki/CUDA

Change slide layout in the menu

Nvidia’s CUDA Compiler

NVCC compiler (is based on LLVM)
•Compiles C/C++ CUDA code parts and delegates host code to host
compiler (gcc, msvc, …)
•Allows to compile to a intermediate virtual language PTX (must be
compiled at runtime by the driver) or directly to machine code (GPU must
match CC)
•Different generations can be compiled into the binary
<=SM2x – Older cards such as GeForce GTX590 (removed as of CUDA9)
SM3x – Kepler
SM5x – Maxwell
SM6x – Pascal (requires CUDA8 to compile)
SM7.0-7.2 – Volta (requires CUDA9 to compile)
SM7.5 – Turing (requires CUDA10 to compile)
SM8.0 – Ampere (requires CUDA 11 to compile)

Change slide layout in the menu

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =
𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑟𝑝𝑠 𝑝𝑒𝑟 𝑆𝑀
max 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑟𝑝𝑠 𝑝𝑒𝑟 𝑆𝑀

Maximum number of warps per multiprocessor: 64

• Occupancy is not the only performance factor,
so lower occupancy can allow better performance in some cases.

• Experiments usually required to find optimal configuration.

• To determine optimal occupancy and kernel launch configuration an excel sheet
or a function cudaOccupancyMaxActiveBlocksPerMultiprocessor() can be used.

Occupancy – Keep the GPU Busy to Hide the Latencies

Active number of warps per multiprocessor: it depends …

• Number of registers used by the threads
• Amount of shared memory used by the blocks
• Number of threads per block

(should be multiple of warp size)

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/

Change slide layout in the menu

Kernel resource limits

Simultaneous processing of warps / blocks on a multiprocessor:
§ more registers ⇒ less warps
§ more shared memory ⇒ less blocks, . . .

Introduction to GPU Usage - HIP Winter School 202192 2021-12-02

A100
Max. threads per block 1024
Max. concurrent blocks per SM 32
Max. concurrent threads (warps) per SM 2048
Number of 32-bit registers per SM 64K
Max. 32-bit registers per block 64K
Max. 32-bit registers per thread 255
Max. shared memory per SM 164kB
Max. shared memory per block 163kB

Change slide layout in the menu

Kernel resource limits

If each Block has 16x16 threads and each thread uses 40 registers, how many
threads can run on each SM?
• Each Block requires 40*256 = 10240 registers
• 65536 = 6 * 10240 + remainder
• So, six blocks can run on an SM as far as registers are concerned
How about when each thread increases the use of registers by 4?
• Each Block now requires 44*256 = 11264 registers
• 65536 < 11264 * 6
• Only five blocks can run on an SM, 1/6 reduction of thread-level parallelism

(TLP)!!!
Expose sufficient parallelism using TLP and ILP.

Introduction to GPU Usage - HIP Winter School 202193 2021-12-02

Change slide layout in the menu

Occupancy

Execution context of a warp
• consists of: Program counters, registers and shared memory
• is maintained on-chip during warp lifetime (context switching has no cost)
Keep the device busy and hide all the latencies with enough warps!
occupancy = active warps/maximum warps
• number of threads per block: multiple of warp size (32), start with 128 or 256
• number of blocks: start with 64 warps per SM (for grid-stride looping)
• experiments required to find optimal execution and resource configuration
• guidance by CUDA occupancy calculator (Excel sheet) or nvvp
• Do we want higher occupancy? Maybe yes. Latency (of memory op. and

algorithmic op.) can be hidden with more threads running.
• Is occupancy THE metric of performance? No! It’s just one of the contributing

factors.

Introduction to GPU Usage - HIP Winter School 202194 2021-12-02

Lab 4
à In the pad

Ask me anything
Also provide feedback please

