
Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Software Architecture and Data Models

Waheedullah Sulaiman Khail1, Pierre Schnizer1

1Helmholtz-Zentrum Berlin
waheedullah.sulaiman khail@helmholtz-berlin.de

2nd Accelerator Middle Layer Workshop
12 – 14 February 2025 HZB/Berlin

1 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Table of Contents

1 What is Software Architecture?

2 Key Principles of Software Architecture

3 Common Architectural Patterns

4 What are Data Models?

5 Relationship Between Architecture and Data Models

6 Good Data Models

7 Common Pitfalls to Avoid

8 Additional Slides
2 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Building Software
Architecture

Why Software
Architecture?

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

What is Software Architecture?

The high-level structure of a software system, including its components,
relationships, and principles governing its design and evolution.

Design Principles (e.g., SOLID, DRY)

Components (e.g., modules, services)

Relationships (e.g., APIs, dependencies)

3 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Building Software
Architecture

Why Software
Architecture?

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Software architecture from and architects view

Figure: What is architecture by Dalip Mahal from javacodegeeks

4 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Building Software
Architecture

Why Software
Architecture?

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Architecture: Buildings vs. Software

A building starts with an empty skeleton (framework), then floors, walls, and
plumbing are added.

Similarly, software starts with a high-level structure before adding modules,
services, and features.

Good architecture ensures stability, flexibility, and scalability.

5 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Building Software
Architecture

Why Software
Architecture?

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Why Software Architecture Matters

Simplifies development: Easier to understand and modify.

Encourages modularity: Components are independent and reusable.

Enhances scalability: Allows for adding features without breaking the system.

6 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

What is Software Architecture?

The high-level structure of a software system, including its components,
relationships, and principles governing its design and evolution.

Design Principles (e.g., SOLID, DRY)

Components (e.g., modules, services)

Relationships (e.g., APIs, dependencies)

7 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Key Principles of Software Architecture

SOLID Principles:

Single Responsibility

Open/Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

Other Principles:

DRY (Don’t Repeat Yourself)

KISS (Keep It Simple, Stupid)

YAGNI (You Aren’t Gonna Need It)

8 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Single Responsibility Principle

A class should have only one reason to change:

Easier Maintenance – Each class does only one thing, doesn’t affect others.

Better Readability – Easier to understand.

Improved Testability – e.g. Unit testing

Loose Coupling – Less dependent on each other.

9 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Single Responsibility Principle
IOC Server

class MonolithicServer:

def __init__(self):

self.pvs = {}

def initialize_pv(self,

pv_name, value=0.0):↪→
self.pvs[pv_name] = value

def update_pv(self, pv_name,

new_value):↪→
if pv_name in self.pvs:

self.pvs[pv_name] =

new_value↪→

def run_server(self):

print("Starting the

Server...")↪→

def monitor_system(self):

print("Monitoring system

health...")↪→

IOC Server

initialize pv()

update pv()

run server()

monitor system()

all within one entity

IOC Server

initialize pv()

update pv()

run server()

monitor system()

all within one entity

Good design

PV initialization: PVSetup

Updates: PVUpdater

Server exec: IOCServer

Health monitor: SystemMonitor

SRP: target

Separate setup / server logic
Updates independant of setup
separate server execution
Health monitoring is a separate concern

SRP applied

class PVSetup:

def initialize_pv(self,

pv_name):↪→
print(f"Initialized PV:

{pv_name}")↪→

class PVUpdater:

def update_pv(self, pv,

new_value):↪→
print(f"Here is update

logic")↪→

class IOCServer:

def run(self):

print("Server is

running...")↪→

class SystemMonitor:

def monitor(self):

print("Monitoring system

health...")↪→

PVSetup (Initialize)

PVUpdater (Update)

IOCServer (Run)

SystemMonitor (Monitor)

10 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Single Responsibility Principle
IOC Server

initialize pv()

update pv()

run server()

monitor system()

all within one entity

Good design

PV initialization: PVSetup

Updates: PVUpdater

Server exec: IOCServer

Health monitor: SystemMonitor

SRP: target

Separate setup / server logic
Updates independant of setup
separate server execution
Health monitoring is a separate concern

SRP applied

class PVSetup:

def initialize_pv(self,

pv_name):↪→
print(f"Initialized PV:

{pv_name}")↪→

class PVUpdater:

def update_pv(self, pv,

new_value):↪→
print(f"Here is update

logic")↪→

class IOCServer:

def run(self):

print("Server is

running...")↪→

class SystemMonitor:

def monitor(self):

print("Monitoring system

health...")↪→

PVSetup (Initialize)

PVUpdater (Update)

IOCServer (Run)

SystemMonitor (Monitor)

PVSetup (Initialize)

PVUpdater (Update)

IOCServer (Run)

SystemMonitor (Monitor)

10 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Single Responsibility Principle

IOC Server

initialize pv()

update pv()

run server()

monitor system()

all within one entity

Good design

PV initialization: PVSetup

Updates: PVUpdater

Server exec: IOCServer

Health monitor: SystemMonitor

SRP: target

Separate setup / server logic
Updates independant of setup
separate server execution
Health monitoring is a separate concern

SRP applied

class PVSetup:

def initialize_pv(self,

pv_name):↪→
print(f"Initialized PV:

{pv_name}")↪→

class PVUpdater:

def update_pv(self, pv,

new_value):↪→
print(f"Here is update

logic")↪→

class IOCServer:

def run(self):

print("Server is

running...")↪→

class SystemMonitor:

def monitor(self):

print("Monitoring system

health...")↪→

PVSetup (Initialize)

PVUpdater (Update)

IOCServer (Run)

SystemMonitor (Monitor)

10 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Open/Closed Principle (OCP)

Software entities (classes, functions, modules) should be open for extension
but closed for modification.

Separate pv initialization for magnets and separate update functionalities.

Adding new magnets (types) will only need to extend pv initialization

Handling pv update logic should be generic and by adding new magnets they
shouldn’t be effected.

11 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Liskov Substitution Principle
Rule

substitute of parent class

must not break behaviour of
superclass

Objects of a subclass should be able to
replace objects of the superclass with-
out affecting the correctness of the
program

class LiaisonManagerBase(metaclass=ABCMeta):

@abstractmethod

def forward(self, lat_elem: str, prop: str) -> (str, str):

"""Abstract translation method"""

class Pontifex(LiaisonManagerBase):

def forward(self, lat_elem: str, prop: str) -> Sequence[(str,

str)]:↪→
"""Violates LSP by returning sequence of str"""

12 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Liskov Substitution Principle
class ElementProxy:

def update(self, prop, val):

print(f"Updating {prop} with {val}")

class KickAngleCorrectorProxy(ElementProxy):

def update(self, prop, val):

if property_id == "x_kick":

print(f"Applying correction for {prop}: {val}")

else:

Preserves expected behavior

super().update(prop, val)

Rule

substitute of parent class

must not break behaviour of subclass

Here: derived returns Sequence[str,str] instead of (str, str)(also violates SRP)

13 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID:Interface Segregation Principle (ISP)

Clients should not be forced to depend on interfaces they do not use

An interface should contain only the methods that are relevant to a specific
client.

A class should not be forced to implement methods it does not need.

Instead of creating large, general-purpose interfaces, break them into smaller,
specific interfaces.

E.g: Control system signal: split interface for read and write Have a look to
ophyd-async protocol definitions

14 / 43

https://blueskyproject.io/ophyd-async/main/index.html
https://github.com/bluesky/ophyd-async/blob/main/src/ophyd_async/core/_protocol.py

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID:Interface Segregation Principle (ISP)

Interface: forces bpm to be settable

class SignalBase:

def read(self):

"reads value from control system"

def put(self, val):

"write value to control system"

class BPM(SignalBase):

def read(self):

"get beam position"

def put(self):

"No way to do that (yet)"

15 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID:Interface Segregation Principle (ISP)

Interface

class Readable:

def read(self) -> Union[float, int, Sequence[int], Sequence[float]]:

"""Reads value from control system"""

raise NotImplementedError

class Writable:

def put(self, val: Union[float, int, Sequence[int], Sequence[float]]) -> None:

"""Writes value synchronously to control system"""

16 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID:Interface Segregation Principle (ISP)

Example: BPM

class Readable:

def read(self):

"""Reads value from control system"""

raise NotImplementedError

class Writable:

def put(self, val) -> None:

"""Writes value synchronously to control system"""

class ReadOnlySignal(Readable):

def read(self) -> float:

return 42.0 # Only needs to implement `read()`

class WriteSignal(Writable):

def put(self, val: float) -> None:

print(f"Sync Writing {val} to control system") # No async needed

class RWSignal(Readable, Writable):

def read(self):

return 42.0

def put(self, val) -> None:

""" """

bpm = ReadOnlySignal(name="BESSYII:bpm:col")

inj = RWSignal(name="BESSYII:bpm:col")

17 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Dependency Inversion Principle

High-Level Module (Accelerator)

ProxyFactoryInterface

PyATProxyFactory

High-level modules should not depend
on low-level modules. Both should de-
pend on abstractions

High-level modules (business logic)
should not directly depend on
low-level modules (implementations
like databases, APIs, etc.).

Instead, both should depend on an
abstraction (like an interface or
abstract class).

This makes code flexible, scalable,
and easier to maintain.

18 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Single Responsibllity

Open/Closed

Liskov Substitution

Interface
Segregatation

Dependency
Inversion

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

interface

class TrnsltnServMgrBase(metaclass=ABCMeta):

@abstractmethod

def forward(self, lat_elem: str, elem_prop: str) -> TrnsltnObjBase:

"""provide corresponding device and its property"""

@abstractmethod

def inverse(self, dev_name: str, dev_prop: str) -> TrnsltnObjBase:

"""following Bluesky/Ophyd naming convention """

implementation

from bact_architecture import TrnsltnServMgrBase, TrnsltnObjBase

class TranslationServiceMgr(TrnltnServMgrBase):

def __init__(self, translator: TrnsltnObjBase = Babelfish()):

self.translator = translator

def forward(self, elem_prop, dev_prop) -> TrnsltnObjBase:

"""provide corresponding device and its property"""

return self.translator

def inverse(self, elem_prop, dev_prop) -> TrnsltnObjBase:

"""provide corresponding device and its property"""

return self.translator

class BabelFish(TrnsltnObjBase):

"""if we had one""" 19 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Layered Architecture
(N-Tier)

Monolithic
Architecture

Microservices
Architecture

Event-Driven
Architecture

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Common Architectural Patterns

Layered Architecture

Monolithic Architecture

Microservices Architecture

Event-Driven Architecture

20 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Layered Architecture
(N-Tier)

Monolithic
Architecture

Microservices
Architecture

Event-Driven
Architecture

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Layered Architecture

Separates concerns into different layers (UI, Business Logic, Data Access)
Best example MVC (Model-View-Controller).

UI Layer: views/

Business Logic Layer: core/accelerators/, bl/, calculations/

Data Layer: model/, ioc/

21 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Layered Architecture
(N-Tier)

Monolithic
Architecture

Microservices
Architecture

Event-Driven
Architecture

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

MVC Pattern

Figure: MVC Pattern explained by MDN web docs

22 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Layered Architecture
(N-Tier)

Monolithic
Architecture

Microservices
Architecture

Event-Driven
Architecture

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Monolithic Architecture

Best for: Small to medium applications, Startups
Example: Traditional Web Applications (Flask, Django)

All components (UI, business logic, and model) are tightly coupled into a
single application.

Simple deployment, easy debugging

23 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Layered Architecture
(N-Tier)

Monolithic
Architecture

Microservices
Architecture

Event-Driven
Architecture

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Microservices Architecture

Best for: Large, scalable applications (Netflix, Amazon)
Example: Cloud-based applications

Each service handles a specific function independently.

Communicates via APIs (HTTP, Messaging Queues).

Scalable, independent deployments

24 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Layered Architecture
(N-Tier)

Monolithic
Architecture

Microservices
Architecture

Event-Driven
Architecture

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Event-Driven Architecture

Best for: Event-driven architecture (EDA) enables decoupled, scalable, and
asynchronous communication between components using events. In our accelerator
system, events serve as the backbone for data flow, state updates, and process
synchronization

The accelerator model generates events when Twiss parameters, orbit data, or
element values change.

accelerator controller subscribes to events and manages their execution.

result views listens for orbit and Twiss updates to push new values to Process
Variables (PVs).

The event model module provides a centralized mechanism for event
subscriptions and broadcasting. Asyncio ensures non-blocking execution of
event handlers.

25 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Layered Architecture
(N-Tier)

Monolithic
Architecture

Microservices
Architecture

Event-Driven
Architecture

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Event-Driven Architecture

Key benefits

Loose Coupling – Components operate independently, improving modularity.

Scalability – Additional subscribers can be added without modifying event
sources.

Asynchronous Execution – Efficient handling of high-frequency updates
without blocking other operations.

26 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

What are Data Models?

A data model is an abstract representation of how data is stored, processed,
and accessed in a system

Define data structure

Ensure data integrity

Facilitate communication between stakeholders

27 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

What is Software Architecture?

The high-level structure of a software system, including its components,
relationships, and principles governing its design and evolution.

Design Principles (e.g., SOLID, DRY)

Components (e.g., modules, services)

Relationships (e.g., APIs, dependencies)

28 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Contact Data Model

Figure: Contact data in a tree view

29 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

BBA Measurement Data in Model
B

B
A

M
ea

su
re

m
en

t
d

at
a

m
o

d
el

30 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Types of Data Models

Conceptual Data Model: High-level, business-focused.

Logical Data Model: Defines structure (e.g., tables, relationships).

Physical Data Model: Implementation-specific (e.g., database schema).

31 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Data Representation in a Data Mode

Type Example Entities Example Attributes
Physical Objects Car, Book, Building color, size, year

People & Roles User, Admin, Customer name, email, role

Transactions Order, Invoice, Payment amount, status, date

Configurations Settings, Preferences theme, language

Events OrderShipped, UserLoggedIn timestamp, details

Business Rules DiscountPolicy, TaxCalculator percentage, ruleset

32 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Data Representation in a Data Model: accelerator

Type Example Entities Example Attributes

Physical Objects magnets, BPM’s, cavities ID, length, K , tf , slew rates, settle times
Events Data arrived, ready for data timestamp, timeout, failure, detail
Measurement Plans setup, measurement steps, . . . device names, values,
Physical Objects magnets, BPM’s, cavities ID, length, K , tf
People & Roles Operator, Shift Manager, Physist name, email, role
Configurations operation mode, ORM mode settings

33 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Best practice:
architecture

Best practice: data

Good Data
Models

Pitfalls

Additional
Slides

Relationship Between Architecture and Data Models

Architecture defines how components interact; data models define how data is
structured.

Example: In microservices, each service may have its own data model, leading
to decentralized data management.

Challenges: Data consistency, synchronization, and scalability.

34 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Best practice:
architecture

Best practice: data

Good Data
Models

Pitfalls

Additional
Slides

Best Practices for Software Architecture

Design for scalability and flexibility.

Use modular and reusable components.

Prioritize security and performance.

Document your architecture.

35 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Best practice:
architecture

Best practice: data

Good Data
Models

Pitfalls

Additional
Slides

Best Practices for Data Modeling

Normalize data to reduce redundancy.

Denormalize for performance when necessary.

Use indexing and partitioning for large datasets.

Plan for data migration and versioning.

36 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

What Makes a Good Data Model?

A good data model ensures users understand where data is and how it looks.

Users should interact with structured information instead of raw data.

Helps improve usability, readability, and maintainability of accelerator data.

37 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Common Pitfalls to Avoid

Over-engineering the architecture.

Ignoring non-functional requirements (e.g., performance, security).

Poor data modeling leading to inefficiencies.

Lack of documentation.

38 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

Conclusion

Thank You!

39 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Single Responsibility Principle: AML bad example

srp: sometimes

machine_abstraction = myMachine

class BadML:

def put(lat_num: int, prop: str, val: float):

d = self.lut[lat_num]

machine_abstraction[d[dev]] = d[prop] * val

40 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Single Responsibility Principle: AML good example

class GoodML(GoodMLBase):

def __init__(self, cm: CmdRwrtrBase, mi: MachineIFBase):

self.cm, self.mi = cm, mi

def update(self, elem: str, prop: str, val: object, on_error: PossibleActions):

return self.mi(self.cm(

Command(lat_elem=elem, prop=prop, val=val, on_error=on_error)

))

class CommandRewriter(CmdRwrtrBase):

def __init__(self, lm: LiasionMgrBase, tm: TrnltnServMgrBase):

self._lm, self._tm = lm, tm

def forward(self, cmd: Command):

dev_id, dev_prop = lm.forward(cmd.lat_elem, cmd.prop)

return Command(

dev=dev_id, prop=dev_prop,

val=self._tm.get([cmd.lat_elem, cmd.prop], [dev_id, dev_prop]).forward(val)

)

class LiasionMgr(LiasionMgrBase):

def forward(self, lat_elem: str, cmd: object):

"""provide corresponding device and its property"""

41 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID: Single Responsibility Principle: AML good example

AML good

class TranslationServiceMgr(TrnltnServMgrBase):

def forward(self, elem_prop, dev_prop) -> TranslationObject:

"""provide corresponding device and its property"""

class TranslationObject(metaclass=ABCMeta):

@abstractmethod

def forward(self, val: object) -> object:

""

class Babelfish(TranslationObject):

"""the golden grail"""

42 / 43

Software
Architecture

W. Sulaiman
Khail

Software
architecture

Key principles

Common
Architectural
Patterns

Data models

Architecture
and data
models

Good Data
Models

Pitfalls

Additional
Slides

SOLID:Interface Segregation Principle (ISP)

from bact_architecture.interfaces.signal import Readable, Writetable, AyncWritable

class EpicsROSignal(Readable):

def read(self) -> Union[float, int, Sequence[int], Sequence[float]]:

"""implement to transport layer"""

class EpicsRWSignal(EpicsROSignal, Writable):

def put(self, val: Union[float, int, Sequence[int], Sequence[float]]) -> None:

"""implement to transport layer"""

class PowerConverter:

def __init__(self, setpoint: Writable, readback: Readable):

self.setp, self.rdbk = setpoint, readback

def read(self):

return self.rdbk.read()

def put(self, val):

self.setp.put(val)

43 / 43

	What is Software Architecture?
	Building Software Architecture
	Why Software Architecture?

	Key Principles of Software Architecture
	Single Responsibility Principle
	Open/Closed Principle (OCP)
	Liskov Substitution Principle (LSP)
	Interface Segregation Principle (ISP)
	Dependency Inversion Principle

	Common Architectural Patterns
	Layered Architecture (N-Tier)
	Monolithic Architecture
	Microservices Architecture
	Event-Driven Architecture

	What are Data Models?
	Relationship Between Architecture and Data Models
	Best Practices for Software Architecture
	Best Practices for Data Modeling

	Good Data Models
	Common Pitfalls to Avoid
	Additional Slides

