

### The <sup>15</sup>O(α,γ)<sup>19</sup>Ne Reaction in Type I X-ray Bursts 17th Rußbach School on Nuclear Astrophysics Tyler Wheeler



MICHIGAN STATE UNIVERSITY



# Outline

- Astrophysical Motivation
  - Roche Lobe overflow
  - Type I X-ray bursts from neutron stars
- Underlying Nuclear Physics
  - HCNO breakout
  - <sup>15</sup>O( $\alpha$ ,  $\gamma$ )<sup>19</sup>Ne Bottleneck
  - Feeding of the 4.03 MeV resonance via the <sup>20</sup>Mg(βpα)<sup>15</sup>O decay sequence
- Measuring the Reaction
  - FRIB
  - Time Projection Chambers
  - GADGET II





### Data Analysis

- Simulating events of interest and background
- Image analysis with convolutional neural network
- Summary

### **Roche Lobe Overflow**





National Science Foundation Michigan State University

### $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

http://web.pd.astro.it/mapelli/lecture4\_mapelli.pdf

# **Type I X-ray Bursts**





U.S. Department of Energy Office of Science National Science Foundation Michigan State University

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$ 

Credit: David A. Hardy, www.astroart.org RXTE; Galloway et al., Astrophs. J. 179, 360 (2008) Tyler Wheeler, Slide 4

# **Bottleneck in Type I X-ray Bursts**

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

| Rank | Reaction                                |
|------|-----------------------------------------|
| 1    | <sup>15</sup> Ο(α, γ) <sup>19</sup> Ne  |
| 2    | <sup>56</sup> Ni(α, p) <sup>59</sup> Cu |
| 3    | <sup>59</sup> Cu(p, γ) <sup>60</sup> Zn |
| 4    | <sup>61</sup> Ga(p, γ) <sup>62</sup> Ge |
| 5    | $^{22}Mg(\alpha, p)^{25}AI$             |
| 6    | <sup>14</sup> O(α, p) <sup>17</sup> F   |
| 7    | <sup>23</sup> Al(p, γ) <sup>24</sup> Si |
| 8    | <sup>18</sup> Ne(α, p) <sup>21</sup> Na |
| 9    | <sup>63</sup> Ga(p, γ) <sup>64</sup> Ge |
| 10   | <sup>19</sup> F(p, α) <sup>16</sup> O   |
| 11   | <sup>12</sup> C(α, γ) <sup>16</sup> O   |
| 12   | <sup>26</sup> Si(α, p) <sup>29</sup> P  |
| 13   | <sup>17</sup> F(α, p) <sup>20</sup> Ne  |
| 14   | $^{24}Mg(\alpha, \gamma)^{28}Si$        |
| 15   | <sup>57</sup> Cu(p, γ) <sup>58</sup> Zn |
| 16   | <sup>60</sup> Zn(α, p) <sup>63</sup> Ga |
| 17   | <sup>17</sup> F(p, γ) <sup>18</sup> Ne  |
| 18   | <sup>40</sup> Sc(p, γ) <sup>41</sup> Ti |
| 19   | <sup>48</sup> Cr(p, γ) <sup>49</sup> Mn |





U.S. Department of Energy Office of Science National Science Foundation Michigan State University

MICHIGAN STATE

Adapted from: R. Cyburt, et al., APJ 930, 2 (2016)

### **Breaking out of the Hot-CNO cycles**





National Science Foundation Michigan State University

#### MICHIGAN STATE UNIVERSITY

Left Figure Credit: Lijie Sun, *private communication* Right Figure Credit: H.Schatz

# The <sup>15</sup>O( $\alpha$ , $\gamma$ )<sup>19</sup>Ne reaction proceeds by resonant capture





U.S. Department of Energy Office of Science National Science Foundation Michigan State University

MICHIGAN STATE

B. Davids, R. H. Cyburt, J. José, and S. Mythili, Astrophys. J. **735**,40 (2011) Tyler Wheeler, Slide 7

# Feeding the 4.03 MeV state via <sup>20</sup>Mg(βp) decay

- We will utilize the decay sequence <sup>20</sup>Mg(βp) to populate the 4.03 MeV state in <sup>19</sup>Ne
- α particle has an energy of ≈0.5 MeV
- From doppler broadening technique, proton has an energy of ≈1.2 MeV.



<sup>20</sup>Na



U.S. Department of Energy Office of Science National Science Foundation Michigan State University

### MICHIGAN STATE

C. Wrede and B. E. Glassman et al., PRC **96**, 032801(R) (2017) B. E. Glassman et al., PRC **99**, 065801(R) (2019)

# Facility for Rare Isotope Beams (FRIB)

- Operational in March of 2022
- PAC approved FRIB Experiment, valid to February 2024
- <sup>36</sup>Ar primary beam that will impinge on a <sup>12</sup>C target to create a fast beam of <sup>20</sup>Mg
- Beam rate of 4.75e+5 pps





U.S. Department of Energy Office of Science National Science Foundation Michigan State University MICHIGAN STATE

Motobayashi, Tohru. (2014). 10.1051/epjconf/20146601013.

# Gaseous Detector w/ Germanium Tagging (GADGET I)







U.S. Department of Energy Office of Science National Science Foundation Michigan State University MICHIGAN STATE

M. Friedman et al, Nucl. Instrum. Methods Phys. Res., Sect. A, 940, 93 (2019)

# **GADGET I Science Results**

#### **Experimental Setup**



#### **Selected Research**

- Tamas Budner et al.
  - Constraining  ${}^{30}$ P(p, γ) ${}^{31}$ S for nova nucleosynthesis by measuring low-energy 31Cl β-delayed proton decays

- Moshe Friedman et al.
  - Low-energy <sup>23</sup>Al β-delayed proton decay and <sup>22</sup>Na destruction in novae
- Jason Surbrook et al.
  - A search for novel beta-minus delayed proton decay in <sup>11</sup>Be



U.S. Department of Energy Office of Science National Science Foundation Michigan State University

MICHIGAN STATE

### **GADGET II: Time Projection Chamber (TPC)**



### **GADGET II: Final Setup**





#### **GADGET II Detection System**



Left Figure Credit: Shelbi Anvar, Internal Communication



National Science Foundation Michigan State University

### MICHIGAN STATE

### **GADGET II: TPC Construction**





U.S. Department of Energy Office of Science National Science Foundation Michigan State University



### **GADGET II: AsAd Box Construction**





U.S. Department of Energy Office of Science National Science Foundation Michigan State University

### $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

# **Triggering on the Mesh**



National Science Foundation

Michigan State University

**FRIB** 

**NSCL** 



Right Figure Credit: R. Mahajan, internal communication



# <sup>220</sup>Rn Alpha Events in GADGET II

#### **Traces From MM Pads**

#### **Reconstructed Track**





U.S. Department of Energy Office of Science National Science Foundation Michigan State University

### MICHIGAN STATE

### Simulating Decay Events in ATTPCROOTv2



UNIV

RSITY

Tyler Wheeler, Slide 18

U.S. Department of Energy Office of Scienc National Science Foundation Michigan State University

FRIB

NSC

### VGG16 Convolutional Neural Network (CNN)



| +         |                            |              |
|-----------|----------------------------|--------------|
| Image Num | Prediction                 | Label        |
| 1         | Alpha                      | Alpha        |
| 2         | Alpha-Proton               | Alpha-Proton |
| 3         | Proton                     | Proton       |
| 4         | Alpha-Proton               | Alpha-Proton |
| 5         | Alpha-Proton               | Alpha-Proton |
| 6         | Alpha                      | Alpha        |
| 7         | Proton                     | Proton       |
| 8         | Proton                     | Proton       |
| 9         | Alpha                      | Alpha        |
| 10        | Alpha-Proton               | Alpha-Proton |
| 11        | Alpha                      | Alpha        |
| 12        | Proton                     | Proton       |
| 13        | Proton                     | Proton       |
| 14        | Proton                     | Proton       |
| 15        | Proton                     | Proton       |
| 16        | Proton                     | Proton       |
| 17        | Alph <mark>a-Proton</mark> | Alpha-Proton |
| 18        | Alpha                      | Proton       |
| 19        | Alpha-Proton               | Alpha-Proton |
| 20        | Alpha-Proton               | Alpha-Proton |
| 21        | Alpha-Proton               | Alpha-Proton |
| 22        | Proton                     | Proton       |
| 23        | Proton                     | Proton       |
| 24        | Alpha-Proton               | Alpha-Proton |
| 25        | Alpha-Proton               | Alpha-Proton |
|           |                            |              |

| +  | +                                       |              |
|----|-----------------------------------------|--------------|
| 26 | Alpha-Proton                            | Alpha-Proton |
| 27 | Alpha                                   | Alpha        |
| 28 | Alpha                                   | Alpha        |
| 29 | Proton                                  | Proton       |
| 30 | Proton                                  | Proton       |
| 31 | Proton                                  | Proton       |
| 32 | Alpha-Proton                            | Alpha-Proton |
| 33 | Alpha                                   | Alpha        |
| 34 | Alpha-Proton                            | Alpha-Proton |
| 35 | Alpha-Proton                            | Alpha-Proton |
| 36 | Proton                                  | Proton       |
| 37 | Alpha-Proton                            | Alpha-Proton |
| 38 | Alpha-Proton                            | Alpha-Proton |
| 39 | Alpha                                   | Alpha        |
| 40 | Alpha-Proton                            | Alpha-Proton |
| 41 | Proton                                  | Proton       |
| 42 | Proton                                  | Proton       |
| 43 | Proton                                  | Proton       |
| 44 | Alpha-Proton                            | Alpha-Proton |
| 45 | Alpha                                   | Alpha        |
| 46 | Alpha                                   | Alpha        |
| 47 | Alpha-Proton                            | Alpha-Proton |
| 48 | Alpha                                   | Alpha        |
| 49 | Alpha                                   | Alpha        |
| 50 | Proton                                  | Proton       |
| T  | *************************************** | +            |

| <ul> <li>bessectors</li> </ul> | 020529703 |              |              |
|--------------------------------|-----------|--------------|--------------|
|                                | 51        | Proton       | Proton       |
|                                | 52        | Proton       | Proton       |
|                                | 53        | Alpha        | Alpha        |
|                                | 54        | Proton       | Proton       |
|                                | 55        | Alpha-Proton | Alpha-Proton |
|                                | 56        | Alpha-Proton | Alpha-Proton |
|                                | 57        | Alpha-Proton | Alpha-Proton |
|                                | 58        | Proton       | Proton       |
|                                | 59        | Alpha        | Alpha        |
| l                              | 60        | Alpha        | Alpha        |
|                                |           |              |              |

| Learning Rate: | 1e-4    |
|----------------|---------|
| Epocs:         | 50      |
| Final Loss:    | 0.04570 |
| Training Acc.: | 99.58%  |
| Testing Acc.:  | 98.33%  |



U.S. Department of Energy Office of Science National Science Foundation Michigan State University

MICHIGAN STATE UNIVERSITY

# Summary

- The <sup>15</sup>O( $\alpha$ ,  $\gamma$ )<sup>19</sup>Ne reaction is the most important reaction rate uncertainty underlying X-ray bursts from neutron stars and the resulting nucleosynthesis
- The resonance strength and corresponding reaction rate can be determined by measuring the alpha particle branching ratio from the 4.03 MeV state in <sup>19</sup>Ne
- We can measure the alpha emission from this state by using the <sup>20</sup>Mg(βpα)<sup>15</sup>O decay sequence at FRIB with a fast beam of <sup>20</sup>Mg and the GADGET II TPC
- We will develop ML algorithms (CNNs) to identify the events of interest
- Once the reaction rate is calculated we will model X-ray burst light curves from neutron stars





### Thank you to our GADGET II Collaborators! Collaboration for FRIB experiment # 21072

A. Adams<sup>1,2</sup>, J. Allmond<sup>4</sup>, H. Alvarez Pol<sup>5</sup>, E. Argo<sup>1,2</sup>, Y. Ayyad<sup>5</sup>, D. Bardayan<sup>6</sup>, D. Bazin<sup>1,2</sup>, T. Budner<sup>1,2</sup>, A. Chen<sup>7</sup>, K. Chipps<sup>4</sup>, B. Davids<sup>8</sup>, J. Dopfer<sup>1,2</sup>, M. Friedman<sup>9</sup>, H. Fynbo<sup>10</sup>, R. Grzywacz<sup>11</sup>, J. Jose<sup>12</sup>, J. Liang<sup>7</sup>, R. Mahajan<sup>1</sup>, S. Pain<sup>4</sup>, D. Pérez-Loureiro<sup>13</sup>, E. Pollacco<sup>14</sup>, A. Psaltis<sup>15</sup>, S. Ravishankar<sup>3</sup>, A. Rogers<sup>16</sup>, L. Schaedig<sup>1,2</sup>, L. J. Sun<sup>1</sup>, J. Surbrook<sup>1,2</sup>, L. Weghorn<sup>1,2</sup>, and C. Wrede<sup>1,2</sup>

<sup>1</sup>Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
<sup>2</sup>Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

<sup>3</sup>Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA

<sup>4</sup>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

<sup>5</sup>Instituto Galego de Física de Altas Enerxías (USC), Spain

<sup>6</sup>Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

<sup>7</sup>M cM aster University, Canada

<sup>8</sup>TRIUMF, Vancouver, British Colombia, Canada

<sup>9</sup>The RACAH institute of Physics, Hebrew University of Jerusalem, Israel

<sup>10</sup>Aarhus University, Aarhus C, Denmark

<sup>11</sup>University of Tennessee, Knoxville, USA

<sup>12</sup>Universitat Politècnica de Catalunya, Barcelona, Spain

<sup>13</sup>Canadian Nuclear Laboratories, Canada

<sup>14</sup>IRFU, CEA Saclay, GIF-sur-Yvette, France

<sup>15</sup>Technical University of Darmstadt, Germany

<sup>16</sup>University of Massachusetts Lowell, USA





### The End

### The <sup>15</sup>O(α,γ)<sup>19</sup>Ne Reaction in Type I X-ray Bursts 17th Rußbach School on Nuclear Astrophysics Tyler Wheeler

This work was supported by the U.S. National Science Foundation under Grants No. PHY-1102511, PHY-1565546, PHY-1913554, and PHY-1811855, and the U.S. Department of Energy, Office of Science, under award No. DE-SC0016052.

# Thank you!



U.S. Department of Energy Office of Science National Science Foundation Michigan State University

