The nuclear matter density functional under the nucleonic hypothesis

Hoa DINH THI, Chiranjib MONDAL, Francesca GULMINELLI

13-19 March, 2022

17th Russbach School on Nuclear Astrophysics

• One-to-one correspondence between the nuclear EoS and static properties of NS.

Image: A matrix

J.M Lattimer. Annu. Rev. Nucl. Part. Sci. 2012. 62:485–515

J.M Lattimer. Annu. Rev. Nucl. Part. Sci. 2012. 62:485–515

- One-to-one correspondence between the nuclear EoS and static properties of NS.
- Studying EoS at high densities is challenging.

J.M Lattimer. Annu. Rev. Nucl. Part. Sci. 2012. 62:485–515

- One-to-one correspondence between the nuclear EoS and static properties of NS.
- Studying EoS at high densities is challenging.
- Progress in NS observation: GW170817 (LVC), M-R (NICER-XMM)

J.M Lattimer. Annu. Rev. Nucl. Part. Sci. 2012. 62:485–515

- One-to-one correspondence between the nuclear EoS and static properties of NS.
- Studying EoS at high densities is challenging.
- Progress in NS observation: GW170817 (LVC), M-R (NICER-XMM)

 \rightarrow Aim to study the combined implications of these measurements on the **nucleonic EoS** using **meta-modeling** techniques by performing **Bayesian analysis**.

4 1 1 4 1 4 1 4

Meta-modeling of the EoS

* Nuclear matter energy per nucleon $(n = n_p + n_n, \delta = (n_n - n_p)/n)$:

$$e(n,\delta) = e_{is}(n) + \delta^2 e_{iv}(n)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Meta-modeling of the EoS

* Nuclear matter energy per nucleon ($n = n_p + n_n$, $\delta = (n_n - n_p)/n$):

$$e(n,\delta) = e_{is}(n) + \delta^2 e_{iv}(n)$$

* Taylor expansions $(x = \frac{n - n_{sat}}{3n_{sat}})$:

$$e_{is} = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{3!}Q_{sat}x^{3} + \frac{1}{4!}Z_{sat}x^{4} + \dots$$
$$e_{iv} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{3!}Q_{sym}x^{3} + \frac{1}{4!}Z_{sym}x^{4} + \dots$$

H. Dinh Thi (LPC Caen)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Meta-modeling of the EoS

* Nuclear matter energy per nucleon ($n = n_p + n_n$, $\delta = (n_n - n_p)/n$):

$$e(n,\delta) = e_{is}(n) + \delta^2 e_{iv}(n)$$

* Taylor expansions $(x = \frac{n - n_{sat}}{3n_{sat}})$:

$$e_{is} = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{3!}Q_{sat}x^{3} + \frac{1}{4!}Z_{sat}x^{4} + \dots$$
$$e_{iv} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{3!}Q_{sym}x^{3} + \frac{1}{4!}Z_{sym}x^{4} + \dots$$

* In meta-modeling:

$$e(n,\delta) = t_{FG}(n,\delta) + v(n,\delta).$$

See Margueron et al. Phys. Rev. C 2018, 97:025806

H. Dinh Thi (LPC Caen)

Russbach, 03/2022 3/14

• All purely nucleonic models can be nicely reproduced with the metamodel by truncating the expansion at order 4.

- All purely nucleonic models can be nicely reproduced with the metamodel by truncating the expansion at order 4.
- No correlation is assumed a priori among the empirical parameters.

- All purely nucleonic models can be nicely reproduced with the metamodel by truncating the expansion at order 4.
- No correlation is assumed a priori among the empirical parameters.
- Metamodel, complemented by surface and curvature parameters ({ $\sigma_0, b_s, \sigma_{0c}, \beta$ }) in CLDM, allows making a unified treatment of the crust.

- All purely nucleonic models can be nicely reproduced with the metamodel by truncating the expansion at order 4.
- No correlation is assumed a priori among the empirical parameters.
- Metamodel, complemented by surface and curvature parameters ({ $\sigma_0, b_s, \sigma_{0c}, \beta$ }) in CLDM, allows making a unified treatment of the crust.

 \rightarrow Deviations between observations and metamodel predictions will signal the failure of the nucleonic approximation, and therefore reveal the presence of deconfined matter at high density.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Bayesian analysis

Posterior

$$P(\{X\}|c) = \mathcal{N}P_{prior}(\{X\}) \prod_{k} P(c_k|\{X\})$$

H. Dinh Thi (LPC Caen)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖圖 釣ぬ⊙

Bayesian analysis

Posterior

$$P(\{X\}|c) = \mathcal{N}P_{prior}(\{X\}) \prod_{k} P(c_k|\{X\})$$

Prior

• Bulk parameters {*X*}:

Parameters	Min	Max
E_{sat} (MeV)	-17	-15
n _{sat} (fm ⁻³)	0.15	0.17
K _{sat} (MeV)	190	270
Q_{sat} (MeV)	-1000	1000
Z_{sat} (MeV)	-3000	3000
E _{sym} (MeV)	26	38
L _{sym} (MeV)	10	80
K _{sym} (MeV)	-400	200
Q_{sym} (MeV)	-2000	2000
Z _{sym} (MeV)	-5000	5000
m*sat	0.6	0.8
$\Delta m_{sat}^{\star}/m$	0.0	0.2
Ь	1	10

Margueron et al. Phys. Rev. C 2018, 97:025806

H. Dinh Thi (LPC Caen)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bayesian analysis

Posterior

$$P(\{X\}|c) = \mathcal{N}P_{prior}(\{X\}) \prod_{k} P(c_k|\{X\})$$

Prior

• Bulk parameters {X}:

Parameters	Min	Max
E _{sat} (MeV)	-17	-15
n_{sat} (fm ⁻³)	0.15	0.17
K _{sat} (MeV)	190	270
Q _{sat} (MeV)	-1000	1000
Z _{sat} (MeV)	-3000	3000
E _{sym} (MeV)	26	38
L _{sym} (MeV)	10	80
K _{sym} (MeV)	-400	200
Q _{sym} (MeV)	-2000	2000
Z _{sym} (MeV)	-5000	5000
m* _{sat}	0.6	0.8
$\Delta m_{sat}^{\star}/m$	0.0	0.2
Ь	1	10

Margueron et al. Phys. Rev. C 2018, 97:025806

• Surface and curvature parameters:

 $\{\sigma_0, b_s, \sigma_{0c}, \beta\}.$

Fit to AME2016 mass table:

 $p_{AME}(\{X\}) = e^{-\chi^2(\{X\})/2}$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Huang et al. Chin. Phys. C 2017, 41, 03000

H. Dinh Thi (LPC Caen)

1. Chiral EFT calculation:

Drischler et al. Phys. Rev. C 2016, 93, 054314.

E SQA

Image: A matrix

- 4 ∃ ▶

1. Chiral EFT calculation:

Drischler et al. Phys. Rev. C 2016, 93, 054314.

2. GW170817 by LVC:

Abbott et al. Phys. Rev. X 2019, 9(1):011001.

-

A (10) < A (10) </p>

1. Chiral EFT calculation:

2. GW170817 by LVC:

A D F A B F A B F A B

Drischler et al. Phys. Rev. C 2016, 93, 054314.

3. PSR 0348+0432 mass: M= 2.01 \pm 0.04 M_{\odot}

Antoniadis et al. Science 2013, 340.

E SQA

1. Chiral EFT calculation:

2. GW170817 by LVC:

Drischler et al. Phys. Rev. C 2016, 93, 054314.

Abbott et al. Phys. Rev. X 2019, 9(1):011001.

3. PSR 0348+0432 mass: $M = 2.01 \pm 0.04 M_{\odot}$

Antoniadis et al. Science 2013, 340.

4. PSR J0030+0451 (NICER, 2019) & J0740+6620 (NICER+XMM, 2021) mass and radius measurement

Miller et al, Astrophys. J. Lett. 2019. 887, L24; Miller et al 2021; arXiv:2105.06979 🕢 🚍 🛌 🦿 🤤

H. Dinh Thi (LPC Caen)

O Prior

- 2 LD: EFT calculation
- **3** HD+LVC: (causality, stability, $e_{sym} > 0$)+ NS mass + LVC
- **4II**: EFT calculation + HD + LVC + NICER

See Dinh Thi, H.; Mondal, C.; Gulminelli, F. Universe 2021, 7, 373.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Equation of State

 \rightarrow Good agreement with GW170817.

H. Dinh Thi (LPC Caen)

-

< 17 ▶

M-R relation

 \rightarrow Good agreement with NICER measurements.

H. Dinh Thi (LPC Caen)

三日 のへの

イロト イヨト イヨト

Crustal properties

 \rightarrow Crust properties are mostly constrained by $\chi {\rm EFT}$ calculation.

$$ightarrow R_{\it crust}^{1.4} = 1.15^{+0.10}_{-0.08}$$
 km; $R_{\it crust}^{2.0} = 0.687^{+0.067}_{-0.067}$ km.

H. Dinh Thi (LPC Caen)

ELE NOR

イロト イボト イヨト イヨト

Radius and Tidal deformability

Dim.less tidal deformability

 $R_{1.4} = 12.78^{+0.30}_{-0.29}$ km. (Miller et al. 2021: $R_{1.4} = 12.45 \pm 0.65$ km)

H. Dinh Thi (LPC Caen)

Empirical EoS parameters

• χ EFT: most effective in low-order isovector parameters (E_{sym} , L_{sym}).

• Astro: most effective in high-order parameters (Q_{sat} , K_{sym} , Q_{sym}).

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Correlation between observables and parameters

• Low-density nuclear physics data constrains the crustal properties, while astrophysical data constrains the global NS properties.

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Low-density nuclear physics data constrains the crustal properties, while astrophysical data constrains the global NS properties.
- The nucleonic hypothesis is consistent with all current data.

- Low-density nuclear physics data constrains the crustal properties, while astrophysical data constrains the global NS properties.
- The nucleonic hypothesis is consistent with all current data.
- We need more stringent constraints from the observations to conclusively establish (reject) the presence of exotic degrees of freedom in high-density matter.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>