# Comprehensive test of the Brink-Axel hypothesis in the energy range of the pygmy dipole resonance

<sup>1</sup>Markova Maria, <sup>1</sup>A.C. Larsen, <sup>1</sup> F.L.B.Garrote

<sup>1</sup>University of Oslo, Department of Physics, Nuclear Physics group March 16, 2022



17th Russbach School on Nuclear Astrophysics

March 2022



M. Markova (UIO)

# Table of contents

▶ Background: what is the gamma-ray strength function?

- ▶ Generalized Brink-Axel hypothesis.
- ► Motivation
- Experimental techniques to test the BA hypothesis:
  - $\triangleright$  The Oslo method
  - $\triangleright$  Oslo method-based extraction of the strength for a certain excitation energy
  - $\triangleright$  Shape method
  - $\triangleright$  Inelastic proton scattering at relativistic beam energies
- $\blacktriangleright$  Main results
  - $\triangleright$  Experimental gamma-ray strength functions of  $^{116,120,124} Sn$
  - $\triangleright$  Comparison of different techniques
- ► Summary



# Briefly about the gamma-ray strength function

- ► Gamma-ray strength function (GSF) is an average property of excited nuclei (by analogy with the level density).
- ▶ By the general definition, the GSF  $f_{XL}(E_{\gamma})$  is the distribution of the average reduced width  $\overline{\Gamma}$  for transitions of XL multipole type (X = E for electric, X = M for magnetic) over gamma-ray energies  $E_{\gamma}$ :

$$f_{i \to f, XL}^J(E_\gamma) = \frac{\bar{\Gamma}_{i \to f, XL}^J}{E_\gamma^{2L+1}} \cdot \rho^J(E_f)$$

where we consider transition(s) from the state(s) i to the state(s) f of a certain spin and parity J,  $E_{\gamma}$  is the energy of an absorbed/emitted photon,  $\rho^{J}(E_{f})$  is the density of levels around excitation energy  $E_{f}$ .

- *i.e.* proportional to the reduced matrix element squared per unit excitation energy interval → transition probability.
- GSF from the photoabsorption experiments "upward " $\overrightarrow{f}$  strength, from the  $\gamma$ -emission "downward " $\overleftarrow{f}$  strength.



Schematic representation of the GSF in terms of  $\gamma$ -transitions.



# **Generalized Brink-Axel hypothesis**

- Photoabsorption cross section (and, therefore, GSF) of the giant electric dipole resonance (GDR) is independent of the detailed structure of the initial state (D. M. Brink).
- Further generalized to both γ-absorption and emission processes (P. Axel).
- Additional independence of the initial and final spins of the states involved (only dipole selection rules).

Generalized Brink-Axel hypothesis

► The "upward "  $\overrightarrow{f}$  GSF should be identical to the "downward "  $\overleftarrow{f}$  GSF.



Schematic representation of the GSF in terms of  $\gamma$ -transitions.



# Motivation: why is the Brink-Axel hypothesis important?

- ▶ Provides significant simplification of many problems in nuclear physics:
  - $\triangleright$  Widely used to calculate the low-energy E1 and M1 strengths (e.g. Oslo method).
  - $\triangleright$  Calculation of Gamow-Teller and Fermi transition strengths in  $\beta$ -decay and electron capture.
  - $\triangleright$  (n, $\gamma$ ) cross-section calculations for the astrophysical r-process in extreme environments and nuclear reactors.

The validity of the Brink-Axel hypothesis is still to be tested for different energy regions and systems!



Comparison of the GSF from the photoabsorption cross section data  $f^{\sigma}$  and photon emission process  $\langle f^p \rangle$ . J. Isaak *et al.*, Physics Letters B 788 (2019) 225 - 230



<u>M. Markova</u> (UIO)

# Motivation: why PDR?

- ▶ The PDR has another particular astrophysical effect:
  - ▷ Influence of the PDR on neutron capture rates and resulting abundances in the r-process.
  - ▷ The r-process is responsible for the production of  $\approx 50\%$  of elements heavier than iron in the Universe.
  - $\triangleright$  Appearance of the PDR increases probability of the  $(n, \gamma)$  reaction.







#### M. Markova (UIO)

#### BA hypothesis

#### March 16, 2022

# Motivation: why PDR?



GSF function for <sup>120</sup>Sn extracted from the Oslo-type of experiment  $(p,p'\gamma)$ , (p,p') and  $(\gamma, n)$  experiments in the Oslo-type of experiment  $(p,p'\gamma)$ , (p,p') and  $(\gamma, n)$  experiments of  $(p,p'\gamma)$ .

#### BA hypothesis

7/24

# Motivation: why Sn?



Comparison of the predictions for the total  $\gamma$ -strength functions with the OCL experimental measurements for  $^{116-119,121,122}$ Sn.

H. K. Toft et al., Phys. Rev. C 83, 044320 (2011)



M. Markova (UIO)

BA hypothesis

March 16, 2022

# Experimental techniques used in the present work

The Brink-Axel hypothesis is tested in the energy range below the neutron separation energy for  $^{116,120,124}$ Sn.





# Oslo method: Experiment on <sup>116,120,124</sup>Sn at the Oslo Cyclotron Laboratory



The principal scheme of the experiment.

#### Principal goal of the experiment is to extract:

- 1. Nuclear level density: number of levels per unit energy
- 2.  $\gamma$ -ray strength function ~ reduced transition probability

#### <sup>120,124</sup>**Sn:**

- Performed in February-March, 2019 by means of OCL facilities with the OSCAR LaBr3(Ce)γ-detector array and charged particle SiRi detector.
- ▶  $126^{\circ}$ - $140^{\circ}$  angles are covered.
- Study of the (p,p'γ) reaction with 16 MeV proton beam on highly pure <sup>120,124</sup>Sn target.
- ▶ proton- $\gamma$  coincidences were extracted.

#### <sup>116</sup>**Sn:**

Older experiment with the previous setup: NaI scintillator detectors+silicon particle telescope, <sup>117</sup>Sn(<sup>3</sup>He, αγ)<sup>116</sup>Sn reaction with 38 MeV <sup>3</sup>He beam.



#### <u>M. Markova</u> (UIO)

#### BA hypothesis

#### March 16, 2022

# The Oslo method



- Unfolding: extraction of the original spectra from the raw  $p-\gamma$  coincidence data on the base of the known detector response.
- ► First generation method: subtraction of secondary and higher order  $\gamma$ -transitions.
  - Factorization of the first generation matrix P as  $P(E_x, E_\gamma) \sim \rho(E_x - E_\gamma) \cdot \mathcal{T}(E_\gamma).$
  - Subsequent extraction of the level density  $\rho(E_x E_\gamma)$  and radiative transmission coefficient  $\mathcal{T}(E_\gamma)$  (Brink-Axel hypothesis).
- $\mathcal{T}(E_{\gamma})$  is used for estimation of the dipole  $\gamma$ -strength function  $f(E_{\gamma}) = \mathcal{T}(E_{\gamma})/2\pi E_{\gamma}^3$ 
  - ▶ Normalization of the level density and  $\gamma$ RSF.



# Extraction of the GSF for a certain initial excitation energy



Since the first generation matrix P is given by  $P(E_x, E_\gamma) \sim \rho(E_x - E_\gamma) \cdot \mathcal{T}(E_\gamma)$ , it is possible to map  $\mathcal{T}(E_x, E_\gamma)$  and therefore  $f(E_x, E_\gamma)$  as functions of initial excitation energy  $E_i$ :

$$f(E_i, E_{\gamma}) = \frac{N(E_i) \cdot P(E_i, E_{\gamma})}{\rho(E_i - E_{\gamma})},$$

where  $N(E_i)$  is the normalization factor:

$$N(E_i) = \frac{\int_0^{E_i} \mathcal{T}(E_\gamma) \rho(E_i - E_\gamma) dE_\gamma}{\int_0^{E_i} P(E_i, E_\gamma) dE_\gamma}$$



## The Shape method



▶ The number of counts in each diagonal is given by:

$$N_D \sim f(E_\gamma) E_\gamma^3 \sum_{J_i = J_f + 1}^{J_i = J_f + 1} \sigma(E_i, J_i) g(E_i, J_i),$$

where  $\sigma(E_i, J_i)$  is the cross-section to populate a certain initial state with spin  $J_i$  at a given excitation energy  $E_i$ , and  $g(E_i, J_i)$  is a known spin distribution function.

▶ For the current analysis the g.s.  $(J_f^P = 0^+)$  and 1st excited state diagonal  $(J_f^P = 2^+)$  are chosen (for the same  $E_i$ ):

$$f(E_{\gamma 1,2}) \frac{N_{D1,2}}{E_{\gamma 1,2}^3 \sum_{J_i = J_f + 1}^{J_i = J_f + 1}} g(E_i, J_i)$$

▶ Pairs of  $f(E_{\gamma 1})$  and  $f(E_{\gamma 2})$  for each excitation energy are "sewed "together:



13/24

# (p,p') experiment at the RCNP



► Total gamma strength functions for stable tin isotopes were also extracted from the forward-angle inelastic proton scattering data at relativistic beam energies (295 MeV protons). Eperiment was performed at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. [S. Bassauer et al., Phys. Rev.C 102, 034327 (2020).]





# Main results: GSF for $^{116,120,124}$ Sn





# Main results: GSF extracted for several initial excitation energies for $^{120}\mathbf{Sn}$





M. Markova (UIO)

# Main results: GSF extracted for several initial and final excitation energies for $^{120}{\rm Sn}$





# Main results: Oslo method + Shape method + (p,p') for <sup>120</sup>Sn





# Main results: Oslo method + Shape method + (p,p') for <sup>124</sup>Sn





# Summary

- ► Comparison of the GSF extracted from the Oslo-type experiments and the relativistic Coulomb excitation experiment in forward-angle inelastic proton scattering demonstrates good agreement in the energy range between ≈ 5.5 MeV and the neutron separation energy.
- Experiments based on ground state photoabsorption provide the same information on GSFs in nuclei as Oslo-type experiments.
- ▶ The GSFs seem to be somewhat independent of the energies and spins of initial and final states (as shown by the Shape method).

the generalized Brink-Axel hypothesis holds for <sup>116,120,124</sup>Sn isotopes in the energy range below the neutron separation energy!

 $\downarrow$ 

 $\downarrow$ 

The assumptions made in the calculations of  $(n,\gamma)$  reactions relevant to r-process nucleosynthesis are verified.



# Thank you for your attention!



### **Porter-Thomas fluctuations**





## **Porter-Thomas fluctuations**





## **Porter-Thomas fluctuations**





<u>M. Markova</u> (UIO)