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Briefly about the gamma-ray strength function

▶ Gamma-ray strength function (GSF) is an average property

of excited nuclei (by analogy with the level density).

▶ By the general definition, the GSF fXL(Eγ) is the

distribution of the average reduced width Γ̄ for transitions of

XL multipole type (X = E for electric, X = M for magnetic)

over gamma-ray energies Eγ:

fJ
i→f,XL(Eγ) =

Γ̄J
i→f,XL

E2L+1
γ

· ρJ(Ef ),

where we consider transition(s) from the state(s) i to the

state(s) f of a certain spin and parity J , Eγ is the energy of

an absorbed/emitted photon, ρJ(Ef ) is the density of levels

around excitation energy Ef .

▶ i.e. proportional to the reduced matrix element squared per

unit excitation energy interval → transition probability.

▶ GSF from the photoabsorption experiments - “upward ”
−→
f

strength, from the γ-emission - “downward ”
←−
f strength.
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Schematic representation of the GSF

in terms of γ-transitions.
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Generalized Brink-Axel hypothesis

▶ Photoabsorption cross section (and, therefore,

GSF) of the giant electric dipole resonance (GDR)

is independent of the detailed structure of the

initial state (D. M. Brink).

▶ Further generalized to both γ-absorption and

emission processes (P. Axel).

▶ Additional independence of the initial and final

spins of the states involved (only dipole selection

rules).

↓
Generalized Brink-Axel hypothesis

▶ The “upward ”
−→
f GSF should be identical to the

“downward ”
←−
f GSF.
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Motivation: why is the Brink-Axel hypothesis important?

▶ Provides significant simplification of many problems in nuclear physics:

▷ Widely used to calculate the low-energy E1 and M1 strengths (e.g. Oslo method).

▷ Calculation of Gamow-Teller and Fermi transition strengths in β-decay and electron capture.

▷ (n,γ) cross-section calculations for the astrophysical r-process in extreme environments and nuclear reactors.

The validity of the Brink-Axel hypothesis is still to be tested for different energy regions and systems!

Violation of the
BA hypothesis?

Comparison of the GSF from the photoabsorption cross section data fσ and photon emission process ⟨fp⟩.
J. Isaak et al., Physics Letters B 788 (2019) 225 - 230

.
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Motivation: why PDR?

▶ The PDR has another particular astrophysical effect:

▷ Influence of the PDR on neutron capture rates and resulting abundances in the r-process.

▷ The r-process is responsible for the production of ≈ 50% of elements heavier than iron in the Universe.

▷ Appearance of the PDR increases probability of the (n, γ) reaction.

Left part: Probable pathway of the r-process.Right part: Abundances of elements produced in the r-process

S. Goriely, Phys. Lett. B 436 (1998).
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Motivation: why PDR?
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GSF function for 120Sn extracted from the Oslo-type of experiment (p,p′γ), (p,p′) and (γ, n) experiments.
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Motivation: why Sn?

Comparison of the predictions for the total γ-strength functions with the OCL experimental

measurements for 116−119,121,122Sn.

H. K. Toft et al., Phys. Rev. C 83, 044320 (2011)

M. Markova (UIO) BA hypothesis March 16, 2022 8 / 24



Experimental techniques used in the present work

The Brink-Axel hypothesis is tested in the energy range below the neutron separation energy for
116,120,124Sn.
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Oslo method: Experiment on 116,120,124Sn at the Oslo Cyclotron

Laboratory
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The principal scheme of the experiment.

Principal goal of the experiment is to extract:

1. Nuclear level density: number of levels per unit energy

2. γ-ray strength function ∼ reduced transition probability

120,124Sn:

▶ Performed in February-March, 2019 by means of OCL

facilities with the OSCAR LaBr3(Ce)γ-detector array and

charged particle SiRi detector.

▶ 126◦-140◦ angles are covered.

▶ Study of the (p,p′γ) reaction with 16 MeV proton beam on

highly pure 120,124Sn target.

▶ proton-γ coincidences were extracted.

116Sn:

▶ Older experiment with the previous setup: NaI scintillator

detectors+silicon particle telescope, 117Sn(3He, αγ)116Sn

reaction with 38 MeV 3He beam.
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The Oslo method
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▶ Unfolding: extraction of the original spectra from the raw p-γ

coincidence data on the base of the known detector response.

↓

▶ First generation method: subtraction of secondary and higher

order γ-transitions.

↓

▶ Factorization of the first generation matrix P as

P (Ex, Eγ) ∼ ρ(Ex − Eγ) · T (Eγ).

↓

▶ Subsequent extraction of the level density ρ(Ex − Eγ) and

radiative transmission coefficient T (Eγ) (Brink-Axel

hypothesis).

↓

▶ T (Eγ) is used for estimation of the dipole γ-strength function

f(Eγ) = T (Eγ)/2πE
3
γ

↓

▶ Normalization of the level density and γRSF.
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Extraction of the GSF for a certain initial excitation energy
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▶ Since the first generation matrix P is given by P (Ex, Eγ) ∼ ρ(Ex − Eγ) · T (Eγ), it is possible to map T (Ex, Eγ) and therefore

f(Ex, Eγ) as functions of initial excitation energy Ei:

f(Ei, Eγ) =
N(Ei) · P (Ei, Eγ)

ρ(Ei − Eγ)
,

where N(Ei) is the normalization factor:

N(Ei) =

∫ Ei

0 T (Eγ)ρ(Ei − Eγ)dEγ∫ Ei

0 P (Ei, Eγ)dEγ

.
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The Shape method
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▶ The number of counts in each diagonal is given by:

ND ∼ f(Eγ)E
3
γ

Ji=Jf+1∑
Ji−Jf−1

σ(Ei, Ji)g(Ei, Ji),

where σ(Ei, Ji) is the cross-section to populate a certain

initial state with spin Ji at a given excitation energy Ei, and

g(Ei, Ji) is a known spin distribution function.

▶ For the current analysis the g.s. (JP
f = 0+) and 1st excited

state diagonal (JP
f = 2+) are chosen (for the same Ei):

f(Eγ1,2)
ND1,2

E3
γ1,2

∑Ji=Jf+1
Ji−Jf−1

g(Ei, Ji)

▶ Pairs of f(Eγ1) and f(Eγ2) for each excitation energy are

“sewed ”together:

𝑓"#(𝐸&#)

𝑓"((𝐸&))

𝑓"#(𝐸&()

𝑓"((𝐸&*)

(𝐸&#+ 𝐸&*)/2
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(p,p′) experiment at the RCNP

▶ Total gamma strength functions for stable tin

isotopes were also extracted from the forward-angle

inelastic proton scattering data at relativistic beam

energies (295 MeV protons). Eperiment was

performed at the Research Center for Nuclear

Physics (RCNP) in Osaka, Japan. [ S. Bassauer et

al., Phys. Rev.C 102, 034327 (2020).]
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Main results: GSF for 116,120,124Sn
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Main results: GSF extracted for several initial excitation energies

for 120Sn
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Main results: GSF extracted for several initial and final excitation

energies for 120Sn
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Main results: Oslo method + Shape method + (p,p′) for 120Sn
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Main results: Oslo method + Shape method + (p,p′) for 124Sn
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Summary

▶ Comparison of the GSF extracted from the Oslo-type experiments and the relativistic Coulomb excitation

experiment in forward-angle inelastic proton scattering demonstrates good agreement in the energy range

between ≈ 5.5 MeV and the neutron separation energy.

▶ Experiments based on ground state photoabsorption provide the same information on GSFs in nuclei as

Oslo-type experiments.

▶ The GSFs seem to be somewhat independent of the energies and spins of initial and final states (as shown

by the Shape method).

↓
the generalized Brink-Axel hypothesis holds for 116,120,124Sn isotopes in the energy range below

the neutron separation energy!

↓
The assumptions made in the calculations of (n,γ) reactions

relevant to r-process nucleosynthesis are verified.
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Thank you for your attention!
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Porter-Thomas fluctuations
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Porter-Thomas fluctuations
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Porter-Thomas fluctuations
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