17. Rußbach School on Nuclear Astrophysics, 17.03.2020, Rußbach am Paß Gschütt, Austria Presolar Grains – A General Introduction

János Kodolányi

Max Planck Institute for Chemistry (Mainz, Germany) Email: j.kodolanyi@mpic.de, janos.kodolanyi@gmail.com

Collaborators (past and present)

- Peter Hoppe, Jan Leitner Max Planck Institute for Chemistry (Mainz, Germany)
- Christian Vollmer Westfälische Wilhelms-Universität Münster (Münster, Germany)
- Maren Müller Max Planck Institute for Polymer Research (Mainz, Germany)
- Thomas Stephan The University of Chicago (U.S.A.)
- Reto Trappitsch Lawrence Livermore National Laboratory (Livermore, U.S.A.)
- Marco Pignatari University of Hull (U.K.)
- Wataru Fujiya Ibaraki University (Mito, Japan)

Outline of the talk

- Introduction: What are presolar grains and how are they found?
- What can we learn by studying presolar grains?
- Tools of isotope analysis of presolar grains
- The parents of presolar grains: Stellar evolution and nucleosynthesis
- Presolar grain types: mineralogy, abundance, isotopy, structure
- What can we expect in presolar grain research in the near future?

Crab Nebula by Hubble © NASA, ESA, J. Hester

IRAS 05437+2502 by Hubble © ESA/Hubble, R. Sahai and NASA

TW Hydrae and associated disc by ALMA © S. Andrews (Harvard-Smithsonian CfA); B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO)

- Winds of red giants
- Stellar explosions

Interstellar medium (ISM)

Few nm to several µm diameter stellar dust grains that **pre**-date the Solar System, and partially or completely survived early Solar System processing: fossil, extra-Solar System stellar dust for direct study in the lab

600 nm Presolar SiC from the Murchison meteorite

Earth/Laboratory

Nascent Solar System

Primitive Solar System materials

A piece of the Murchison meteorite (Field Museum, Chicago, U.S.A.)

NanoSIMS at the Max Planck Institute for Chemistry (Mainz, Germany)

- Most grains are small (diameter <250 nm)
- Silicates, oxides, graphite, SiC, etc.
- Found in meteorite matrices, interplanetary dust particles (IDPs) and cometary dust, based on *anomalous isotope composition* (i.e., composition outside the range of Solar System isotope variations) – sampling bias?
- First presolar isotope anomalies detected in bulk samples (H, O, *Ne, Xe*)
- First presolar grains detected in chemically separated aliquots of primitive meteorites

Most grains are small (diameter <250 nm)

- Silicates, oxides, graphite, SiC, etc.
- Found in meteorite matrices, interplanetary dust particles (IDPs) and cometary dust, based on *anomalous isotope composition* (i.e., composition outside the range of Solar System isotope variations) – sampling bias?
- First presolar isotope anomalies detected in bulk samples (H, O, *Ne, Xe*)
- First presolar grains detected in chemically separated aliquots of primitive meteorites

- Most grains are small (diameter <250 nm)
- Silicates, oxides, graphite, SiC, etc.
- Found in meteorite matrices, interplanetary dust particles (IDPs) and cometary dust, based on *anomalous isotope composition* (i.e., composition outside the range of Solar System isotope variations) – sampling bias?
- First presolar isotope anomalies detected in bulk samples (H, O, *Ne, Xe*)
- First presolar grains detected in chemically separated aliquots of primitive meteorites

Ernst Zinner*, Tang Ming† & Edward Anders†‡

Why presolar grains?

They document stellar evolution and Galactic Chemical Evolution

E.g., Si isotope model predictions for AGB stars...

Why presolar grains?

They tell about dust formation in stellar environments...

- Pressure and T of condensing gas
- Condensation sequence(s)
- Kinetics of condensation

...and about ISM/early Solar System processes:

- Condensation of additional material
- Grain alteration/destruction

Polymineralic AGB condensate (Leitner et al., 2018)

AGB spinel aggregate with silicate mantle that formed in the ISM or the Solar System (Zega et al., 2020)

Why presolar grains?

CC

CR2

CB3

CM2

CV3 CO3

CK4

1.5

Tringuier et al. (2007)

⁵⁴Cr-enriched spinel grains

Mars

EC

0

E(54Cr)

0.5

1

What kind of data?

- Isotope composition
- Chemical composition
- Structural data
- Relative abundance

FE-SE image of a presolar silicate (Leitner et al., 2018)

- Isotope/chemical/structural analysis of individual presolar grains requires *nano-analytical techniques:*
- Isotope compositions usually measured by nanoscale secondary ion mass spectrometry (the instrument is abbreviated NanoSIMS) and by resonance ionization mass spectrometry (RIMS; instruments: CHILI, LION, CHARISMA)
- Chemical composition determined by Auger spectroscopy and energy dispersive X-rax spectroscopy (EDX)
- Structural data obtained using transmission electron microscopy (TEM)

Isotope analysis

- I. NanoSIMS:
- Secondary ion mass spectrometer
- Two primary ion sources
 (Cs⁺, Hyperion: O⁺ or O⁻)
- Spatial resolution down to 80 nm
- 5 masses analysed simultaneously
- Mass resolving power (MRP): several thousand (hydride interferences of major elements are easily resolved)
- Precision (isotope ratios of major elements in presolar grains): % level

Isotope analysis

- I. NanoSIMS:
- Secondary ion mass spectrometer
- Two primary ion sources (Cs⁺, Hyperion: O⁺ or O⁻)
- Spatial resolution down to 80 nm
- 5 masses analysed simultaneously
- Mass resolving power (MRP): several thousand (hydride interferences of major elements are easily resolved)
- Precision (isotope ratios of major elements in presolar grains): % level

) = Presolar grain with isotope anomaly

Isotope analysis

FOR CHEMISTRY

II. RIMS:

- Ionization of selected elements
- Ion or laser beam used to sample analyte
- Currently ~1 μm spatial resolution
- Low mass resolution (MRP <~1500), high useful yield (up to ~10 %)
- Some isotope systems are not accessible due to insufficient ionisation
- Isobaric interference problems
 circumvented
- Precision (isotope ratios of major elements in presolar grains): % level or better

CHILI, The University of Chicago

н		. \A	/hi	tai		- m	00	to t	ha	+ ~	20					-	He	
Li	Be	B C N O F M														Ne		
Na	Mg	be analysed with CHILI AI Si P S CI											Ar					
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe	
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
Fr	Ra	Ra Ac Elements key to detection of pre-solar grains															ins	
							AI Si P S CI Ar Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Re Os Ir Pt Au Hg TI Pb Bi Po At Rn Key to detection of pre-solar grains Re Stephan et al. (2016) Stephan et al. (2016) Ar											
			Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
			Th	Pa	U	Np	Pu	Am			Sten	han	et o	ıl. (2	016)		

Chemical analysis

- SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy)
- TEM-EDX (Transmission Electron Microscope-EDX)
- Auger spectroscopy

Auger Nanoprobe at the WUSTL Image credit: Maitrayee Bose

Auger element maps of presolar silicate grain (circled) from the Acfer 094 carbonaceous chondrite

Structural analysis

• TEM

FEI Themis TEM at the University of Münster

X PLANCK INSTITUTE FOR CHEMISTRY

$$E_{nuc} + E_{gr} = E_{int} + E_{rad}$$

- Stellar evolution and nucleosynthesis depend primarily on stellar mass and metallicity (other factors: mass loss, presence of companion)
- More massive stars on main sequence are more luminous, hotter, and they 'age' faster
- Nucleosynthesis occurs in stellar interiors, nucleosynthesis products are brought to stellar surface (source of matter that condenses into dust) by convection

MAX PLANCK INSTITUTI FOR CHEMISTRY

Low- and intermediate mass stars (M $_{\rm Init}$ < 8–10 × M $_{\odot}$)

<u>Main sequence</u>: core H burning (p-p chain, producing ⁴He, at higher masses the CNO cycle, producing ¹³C, ¹⁴N, and ¹⁷O)

<u>RGB</u>: shell H burning (CNO cycle, NeNa cycle; main products: <u>⁴He</u>, ¹³C, <u>¹⁴N</u>, ¹⁷O, ²⁶Al)

<u>AGB</u>: shell H burning (CNO, NeNa, MgAl cycles) and He burning (α captures, s-process; main products: ⁴He, ¹²C, ¹⁶O, ²²Ne, n-rich isotopes, isotopes around N = 50 and 82 abundance peaks); C/O of star's envelope increases, changing the minerals condensing in the stellar winds

OR CHEMISTR

Evolutionary Tracks off the Main Sequence perature, K

10.000

Main sequence: core H burning (p-p chain, producing ⁴He, at higher masses the CNO cycle, producing ¹³C, ¹⁴N, and ¹⁷O)

<u>RGB</u>: shell H burning (CNO cycle, NeNa cycle; main products: <u>4He</u>, ¹³C, <u>14N</u>, ¹⁷O, ²⁶Al)

AGB: shell H burning (CNO, NeNa, MgAl cycles) and He burning (α captures, s-process; main products: ⁴He, ¹²C, ¹⁶O, ²²Ne, n-rich isotopes, isotopes around N = 50 and 82 abundance peaks); C/O of star's envelope increases, changing the minerals condensing in the stellar winds

MAX PLANCK INSTITUTE FOR CHEMISTRY

Massive stars ($M_{Init} > 8-10 \times M_{\odot}$)

- More nuclear burning stages, than in low and intermediate mass stars, because core can heat up sufficiently enough to ignite fusion reactions of successively heavier elements (i.e., C and heavier)
- After core collapse, a large fraction of the matter overlying the core is ejected and partially and temporarily compressed/heated
- Hydrostatic and explosive burning
- Proton-, α- and n-captures, similar to what happens in low and intermediate mass stars, but at higher T and density
- Rapid n-capture = r-process, during explosion; main products are very n-rich isotopes
- *p*-process

FOR CHEMISTRY

V1213 Cen Mróz et al. (2016)

Novae

 Thermonuclear runaway on a CO or a ONe white dwarf due to accumulation of H-rich matter from nearby companion (binary system)

- Explosive H burning (hot CNO cycle; main products: ¹³C, ¹⁵N, ¹⁷O, ²²Ne, ²⁶Al)
- Heavy element isotope abundances
 unaffected

Presolar grain types

SiC

Hoppe (2011) Graphite

- O-rich grains: **silicates** (olivine, enstatite, non-stoichiometric compounds), **spinel**, **corundum** (and amorphous Al₂O₃), hibonite, chromite, FeO, MgO, SiO₂
- C-rich grains: SiC, graphite, TiC (and other refractory carbides), diamond

Presolar silicates

- In situ detection (chemical grain separation impossible)
- Abundance maximum at 200–250 ppm (by volume) in primitive meteorites and 600–700 ppm in IDPs
- Longest dimension usually 200–300 nm
- Vast majority is ferromagnesian silicates with olivine-like, enstatite-like and non-stoichiometric compositions
- Al-rich silicates, Ca-Mg-rich silicates rare

Presolar silicates

- Glass (also for grains that have stoichiometric olivine or enstatite composition), single crystals of olivine and enstatite as well as polycrystalline aggregates
- Glass grains are most abundant, but sampling may be biased (e.g., grain size matters when grains are chosen for FIB lift-out and structural analysis with TEM)

Typical selected area electron diffraction (SAED) pattern of amorphous material

Presolar oxides

- Can be separated from meteorite matrices
 (but together with Solar System oxides)
- Abundance about 10–12 ppm in primitive meteorites
- Spinel, hibonite, MgO, FeO, TiO₂, corundum and amorphous Al₂O₃
- Single crystals and crystal aggregates

- Plenty of data: <u>O</u>, Mg, Si (silicates)
- Limited/sporadic data: Ca, Ti, Cr, Fe, Ni
- Consequences of the fact that oxides can be chemically separated:
 - Oxide data are less affected by contamination than silicate data
 - Oxides have been studied for longer than silicates
- Isotope measurements of elements with low electronegativity benefited greatly from improvement of O primary ion source of NanoSIMS a few years ago (so far, silicate isotope record is most affected)

MAX PLANCK INSTITUTE FOR CHEMISTRY

 10^{-1}

ANCK INSTIT

H burning at high T (> 40 MK) depletes
 ¹⁸O, but requires extra mixing (low mass
 stars) or hot stellar envelope
 (intermediate mass stars)

 10^{-2}

(b)

¹⁷O/¹⁶O

Group 3 grains with low 17O/18O originated in low mass stars with sub-solar Z

18O/16O

¹⁸O-enrichment in some Group 3 and all Group 4 grains is best explained by nucleosynthesis in SNe

- Mg isotope data reveal more
- 3–12 % of Group 1 silicate grains have large enrichments in ²⁵Mg and small enrichments in ²⁶Mg, which is more consistent with an SN origin (nova origin unlikely for the lack of collateral shifts in O and Si isotope compositions)

 This 'SN subgroup' within Group 1 grains have so far been not recognised among oxides!

- Separation possible, but difficult
- <10 ppm in carbonaceous chondrites
- Up to several µm in diameter
- 'Onions' and 'cauliflowers'

- 'Onion'
- More abundant among high density (HD) graphite fractions
- Concentraic layers of well-graphitised carbon
- Hardly ordered assemblage of nanometre graphene sheets in core

- Cauliflower
- More abundant in low density graphite (LD) fractions
- Concentric but contorted/curved layers of graphite with no long range continuity, or
- Aggregate of 'onions'

TEM images of slices of 'onion' and 'cauliflower' presolar graphite grains from the Murchison meteorite

Croat et al. (2005)

- 'Onion'
- More abundant among HD graphite fractions
- Concentraic layers of well-graphitised carbon
- Hardly ordered assemblage of few-nm graphene sheets or TiC grain in core
- TiC inclusions enriched in Zr and Mo (refractory elements whose abundance is enhanced by the *s*-process)

- 'Cauliflower'
- More abundant in LD graphite fractions
- Concentric but contorted/curved layers of graphite with no long range continuity, or
- Aggregate of 'onions'
- TiC inclusions with Zr and Mo below detection limit, but a lot of V

TEM images of presolar graphites from the Murchison meteorite; arrows indicate TiC inclusions

- Graphite grains + Zr- and Mo-rich TiC, several times solar ¹²C/¹³C, and *s*-process dominated noble gas isotope ratios probably originated in the winds of low-Z and low-mass AGB stars
- More abundant in HD graphite fractions

- Graphite grains with ²⁸Si and/or ¹⁸O enriched isotope composition probably condensed in SN ejecta
- Graphite grains with evidence for the former presence of ⁴⁴Ti or large amounts of ²⁶Al condensed in SN ejecta
- Such grains are more common in the LD graphite fractions

• Graphite grains provide unique insight into grain condensation around evolved stars

HD graphite grains with refractory carbide inclusions

- Best studied presolar grain type
- Isotope data: Si, C, N, Ne, Mg, S, Ca, Ti, Fe, Ni, Sr, Zr, Mo, Ru, Ba
- Abundance: 30–60 ppm in the matrices of primitive meteorites
- Normally sub-µm size
- Mainstream (MS), AB (1&2), Y, Z, X, and C grains

the Murchison meteorite

Presolar SiC

Solar

-200 -400 -6001000 200 -200 0 200 400 600 800 δ^{30} Si/²⁸Si (‰) Solar 1000 Solar 0 ۲ -1000 -1000 1000 2000 3000 0 Zinner, 2014 δ^{30} Si/²⁸Si (‰)

200

δ²⁹Si/²⁸Si (‰)

§²⁹Si/²⁸Si (‰)

- Best studied presolar grain type
- Isotope data: Si, C, N, Ne, Mg, S, Ca, Ti, Fe, Ni, Sr, Zr, Mo, Ru, Ba
- Abundance: 30–60 ppm in the matrices of primitive meteorites
- Normally sub-µm size
- Mainstream (MS), AB (1&2), Y, Z, X, and C grains

14

- MS AB2

134 135 136 137 138

-800

-1000

84

86 87 88 92

×Sr

94 95 96 97

×Mo

98

100 130

132

×Ba

Green: s-process only, or s-process dominated isotopes

¹³C(α ,n)¹⁶O long-lasting (millenia), low n-flux (<10⁸ ncm⁻³), operates at lower T (100–150MK)

 22 Ne(α ,n) 25 Mg short (decades at most), high nflux (10¹⁰-10¹¹ ncm⁻³), operates at higher T (>300MK) only marginally activated in AGB SiC grains' parents – or is it?

MAX PLANCK INSTITUTE FOR CHEMISTRY

- X and C grains have peculiar isotope compositions
- SN origin likely because of C-N-Si isotope compositions, and the former presence of diagnostic shortlived radioactive isotopes (e.g., ⁴⁴Ti)

- X and C grains have peculiar isotope compositions
- Mixing and chemical fractionation?
- Comparison with 1D models not satisfactory

- Kinetic condensation models:
 - Molecule formation, molecular clusters, grains
 - Condensation T few 100 K
 - C/O > 1
 - Carbon dust precedes or accompanies formation of SiC in He/C zone matter

Sarangi and Cherchneff (2015)

- Presolar grain record:
- Single crystals: up to >1 μm diameter
- Polycrystalline grains: epitaxial crystal domains, twinning
- Formation of large grains not by coagulation of smaller grains (but there are exceptions)

Kodolányi et al. (2018b)

<mark>(b–f)^(g–i)</mark> = 35.5°

3C-SiC: (114)

clumpy Graphite seed

0.4

0.5

Kodolányi et al. (2018b₎

- Presolar grain record:
- Single crystals: up to >1 μ m diameter
- Polycrystalline grains: epitaxial crystal domains, twinning
- Formation of large grains not by coagulation of smaller grains (but there are exceptions) 0.5 #1: SC13Zone5 #3: F10HeCTop #6: GB433-R02

What comes next?

- Hyperion O ion source allows alkaline and transition metals to be measured in silicates (but isobaric interferences are an obstacle): Ca, Ti
- More, spatially better resolved data from CHILI (e.g., Mo isotopes in SiC X grains
- 3D SN nucleosynthesis models (there are some already, e.g., *Schulte et al., 2021*)
- Condensation will be better understood with a number of new TEM studies, especially the condensation of silicates

Summary

- Presolar grains are usually small (d < 250 nm) stellar dust grains of extra Solar System origin, that are found in the matrices of primitive meteorites and in cometary dust
- Silicates, oxides, SiC, graphite are the most important
- Presolar grains carry important messages about stellar nucleosynthesis, Galactic Chemical Evolution, and grain condensation
- Most abundant presolar grain types condensed in the winds of low-mass AGB stars of about solar metallicity
- Some presolar grains come from core collapse SNe

