Nuclear Astrophysics with Accelerator Mass Spectrometry (AMS)

Georg Rugel working (now) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) @ FWIR: Accelerator Mass Spectrometry & Isotope Research measuring (now) @DREAMS (DREsden AMS)

17th Rußbach School on Nuclear Astrophysics, 2022 March 13th-19th

Georg Rugel | Institute of Ion Beam Physics and Materials Research I https://www.hzdr.de/db/Cms?pNid=1061

Overview

Accelerator Mass Spectrometry
 DREsden AMS

• Applications of AMS to Astrophysics some examples (only very brief)

HST Crab Nebula

Crab nebula ~ 2000 pc

Near-Earth Supernova ~ 100 pc 1 pc ~ 3 Lyr

Application Astrophysics

Accelerator Mass Spectrometry (measure rare isotopes)

Messengers:

Radionuclides

DREAMS (DREsden AMS)

MLL AMS at TU Munich

Member of the Helmholtz Association

Accelerator Mass Spectrometry

Counting individual atoms (like conventional **MS**)

But

- accelerator (mostly a tandem but new developments)
- molecules destroyed by stripping
- challenge: isobar separation
 techniques: e.g. gas-filled magnet (GFM),
 degrader foil, + detector (ionisation chamber)
- mostly for radionuclides
- extremely sensitive (isotopic ratio $\sim 10^{-16}$)

Historical

1939 Alvarez and Cornog discovered accidentally ³He (cyclotron). From 1939 until 1977, for around 40 years, dark and silent!

1977 Muller proposed to measure ¹⁴C or ¹⁰Be by means of a cyclotron. Independently, Gove, Litherland, and Purser suggested the use of a Tandem accelerator for ¹⁴C measurements.

2020 Much more than 100 AMS laboratories worldwide. From small table top accelerators until large facilities with more than 10 MV terminal voltage.

Isotopes of interest from ³H until the heaviest nuclides like ²⁴⁴Pu.

The majority of AMS laboratories is dedicated to ¹⁴C and ¹⁰Be.

Every 3 years AMS conference: 2021 online (Sydney) – A lot of new ideas, developments!

Why Accelerator Mass Spectrometry (AMS)? We are impatient scientists ...

- Long-lived radionuclides ($T_{1/2} \sim$ millions of years)
- Isotopic ratios (radio/stable)
- Decay counting too long
- Count atoms instead

Part of the chart of nuclides, 9th edition, 2015

Nucleosynthesis

Member of the Helmholtz Association

Radionuclides detected by AMS

modified/updated from W. Kutschera 1981

Member of the Helmholtz Association

From VERA

Member of the Helmholtz Association

Georg Rugel | Institute of Ion Beam Physics and Materials Research I www.hzdr.de | g.rugel@hzdr.de

Page 9

AMS Setup at Munich

DREAMS - DREsden AMS

high-energy MS (+ positive ions)

AMS Facilities max. voltages: 3 MV; 0.5 MV; 0.2 MV

Vienna

Compact AMS, TV = 0.5 MV6 m x 5 m = 30 m²

Poznan

Mini AMS, TV = 0.2 MV3.0 m x 2.3 m = 6.9 m²

Zurich

Member of the Helmholtz Association

New dedicated AMS @ HZDR **Building Construction started 2022** max. voltage: 1 MV Novel projects – like: Isobar suppression at low energy side "Laser"

contact: Anton Wallner, Johannes Lachner

NEW Street

2022-02

Member of the Helmholtz Association

Georg Rugel | Institute of Ion Beam Physics and Materials Research I www.hzdr.de | g.rugel@hzdr.de

Frauenkirche Dresden, Germany

e.g. sand grain Ø 0.44 mm

One black grain : $\sim 10^{-15}$

Member of the Helmholtz Association

AMS needs chemistry (sample material into an ion source!)

Careful extraction of RN (quantitative, no contamination, 1st isobar separation)

6 mm

AMS needs a high performance negative ion source

Wheel for 200 samples (4×50)

Sometimes possible to avoid chemistry;

e.g. cross section measurements

cm

Member of the Helmholtz Association

Chemical AMS sample preparation @ DREAMS

(operational since September 2009) many users; two laboratories

Ľ	-∺AN	legat	ive l	on C	ookb	ook -	Mozilla					• •	×
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>G</u> o	<u>B</u> ook	marks	<u>T</u> ools	<u>W</u> indow	<u>H</u> elp				
•	de se	- Fo) nward	▼ F	3. Reload	Stop	🤳 htt	p://tvdg10	.phy.bnl.gov/COOKBOOK/	d Print	•	\mathbb{D}	D
ī	🚮 Hon	ne 🔰	Book	mark	s								

Acknowledgements
Introduction
Negative Ion Source
Operating Conditions & Procedures
Cathode Preparation
Gas Cathodes
Ionization Efficiency
Source Maintenance & Cleaning
Toxicity of Cathode Materials
Ionization Potentials & Electron Affinities

A Negative-Ion Cookbook

Roy Middleton

Department Of Physics, University of Pennsylvania Philadelphia, PA 19104 October 1989 (Revised February 1990)

<u>1</u> H Hydrogen										<u>2<mark>He</mark></u> Helium
<u>3</u> Li	<u>4</u> Be		<u>4Be</u> <u>5B</u> <u>6C</u> <u>7N</u> <u>8O</u>		<u>8</u> 0	<u>9</u>	rine	<u>10</u> Ne		
Lithium	Beryllium		Beryllium Boron Carbon Nitrogen Oxygen		Oxygen	Fluor		Neon		
<u>11</u> Na	<u>12</u> M	<mark>g</mark>	<u>13</u> Al	<u>14</u> Si	<u>15</u>	P	<u>16</u>	<u>17</u>	<u>Cl</u>	<u>18</u> Ar
Sodium	Magne si	ium	Aluminum	Silicon	Phospl	horus	Sulfur	Chlor	rine	Argon
<u>19</u> K	<u>20Ca</u>		<u>31</u> Ga	<u>32</u> Ge	<u>33</u>	As	<u>34</u> Se	<u>35</u>	<u>Br</u>	<u>36</u> Kr
Potassium	Calcium		Gallium	Germanium	Arse	nic	Selenium	Bron	nine	Krypton
<u>37</u> Rb	<u>38</u> Sr		<u>49</u> In	<u>50</u> Sn	<u>51</u>	<u>Sb</u>	<u>52</u> Te	<u>53</u>	<u>I</u>	<u>54Xe</u>
Rubidium	Strontium		Indium	_{Tin}	Antim	iony	Tellurium	Iodi	ne	Xenon
<u>55<mark>Cs</mark></u>	<u>56<mark>Ba</mark></u>		<u>81</u> T1	82 Pb	83	<u>Bi</u>	<u>84</u> Po	<u>854</u>	At	<u>86</u> Rn
Cesium	Barium		Thallium	Lead	Bism	uth	Polonium	A stat	tine	Radon
Transition Elements										
<u>21</u> Sc	<u>22</u> Ti	<u>23</u> <u>V</u>	<u>24</u> Cr	<u>25</u> Mn	<u>26Fe</u>	<u>27</u> Co	<u>28</u> Ni	<u>29</u> Cu	<u>30Zn</u>	
Scandium	Titanium	Vanadium	Chromium	Mangane se	Iron	Cobalt	Nickel	Copper	Zinc	
V	7.	Mb	M.	To	Du	Dh.	D. D.	. – A ~		

<u>39 Y</u> 40<u>∠r</u> 41<u>Nb</u> 42M0 43<u>1</u>C 44<u>Ru</u> 45<u>Kh</u> 46<u>Pd</u> 47<u>Ag</u> 48<u>Cd</u> Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium 57La 72Hf 74W 75Re 78Pt 73Ta 76Os 77Ir 79Au 80Hg Hafnium Rhenium Osmium Gold Lanthanum Tantalum Tungsten Iridium Platinum Mercury

Lanthanides

🐝 🚢 🎺 📫

Editoriande 5											
<u>58Ce</u>	<u>59Pr</u>	<u>60</u> Nd	<u>61</u> Pm	<u>62Sm</u>	<u>63Eu</u>	<u>64</u> Gd					
Cenum	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium					
<u>65</u> Tb	<u>66</u> Dy	<u>67</u> H0	<u>68</u> Er	<u>69</u> Tm	<u>70</u> Yb	<u>71</u> Lu					
Terbium	Dy spro sium	Holmium	Erbium	Thulium	Ytterbium	Lutetium					

Actinides		
90 <u>Th</u>	91 <u>Pa</u>	92 <u>U</u>
Thorium	Protactinium	Uranium

Michael Wiplich at the Tandem Van de Graaff Accelerator located at the Brookhaven National Laboratory prepared the electronic version of the Negative-Ion Cookbook. The original paper version was converted to electronic form using an H.P. Scanjet 6200C scanner and H.P. Precision-Scan Pro OCR software followed by manual fix up in MS Word 2000 Pro which was also used to convert the document to HTML.

 $Please \ address \ any \ comments, \ suggestions \ or \ corrections \ to \ \underline{mwiplich@bnl.gov}.$

The Home Page of the Brookhaven National Laboratory Tandem Van de Graaff Accelerator Is Located At http://tvdg10.phy.bnl.gov/.

Working horse:

Sputter ion sources Middleton type

No double or triple charged negative ions!

Scanned version available under:

-0- 2

http://tvdg10.phy.bnl.gov/ COOKBOOK/

IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA			
1 H			T	D			2He			
13.59			Ionization	Potential			24.48			
0.754		Electron Affinity								
3Li	4Be	5 B	6C	7 N	80	9 F	10 Ne			
5.39	9.32	8.30	11.26	14.53	13.61	17.42	21.56			
0.618	0.195*	0.277	1.263	-0.07	1.461	3.399	< 0			
11Na	12 Mg	13 AI	1451	151	16 S	17 Cl	18 Ar			
5.14	7.64	5.98	8.15	10.48	10.36	13.01	15.76			
0.548	< 0	0.441	1.385	0.747	2.077	3.617	< 0			
19 K	20 Ca	31Ga	32Ge	33 As	34 Se	35 Br	36Kr			
4.34	6.11	6.00	7.90	9.81	9.75	11.81	14.00			
0.501	0.043	0.30	1.2	0.81	2.021	3.365	< 0			
37 Rb	39 Sr	49 I n	50Sn	51 Sb	52 Te	53I	54Xe			
4.18	5.70	5.79	7.34	8.64	9.01	10.45	12.13			
0.486	< 0	0.3	1.2	1.07	1.971	3.059	< 0			
55Cs	56 Ba	81 TI	82 Pb	83 Bi	84 Po	85At	86 Rn			
3.89	5.21	6.11	7.42	7.29	8.42	9.5	10.75			
0.472	< 0	0.2	0.364	0.946	1.9	2.8	< 0			

*Metastable

	Transition Elements											
21 Se	22 Ti	23 V	24Cr	26 Mn	26 Fe	27 Co	28Ni	29 Cu	30Zn			
6.54	6.82	6.74	6.77	7.44	7.87	7.86	7.64	7.73	9.39			
0.188	0.079	0.525	0.666	<0	0.163	0.661	1.156	1.228	<0			
39 Y	40Zr	41Nb	42 Mo	43 Te	44 Ru	46Rh	46 Pd	47 Ag	49 Cd			
6.38	6.84	6.88	7.10	7.28	7.37	7.46	8.34	7.58	8.99			
0.307	0.426	0.893	0.746	0.55	1.05	1.137	0.557	1.302	< 0			
57La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 I r	79 Pt	79Au	80Hg			
5.58	7.0	7.89	7.98	7.88	8.7	9.1	9.0	9.22	10.44			
0.5	~0	0.322	0.815	0.15	1.1	1.565	2.128	2.309	<0			

Lanthanides *						
58 Ce	59 P r	60Nd	61Рш	62Sm	63Eu	64 Gd
5.47	5.42	5.49	5.55	5.63	5.67	6.16
0.5	0.0	-0.3	-0.3	0.3	-0.3	0.5
65 Tb	66Dy	67 Ho	68Er	69Тш	70 Yb	71Lu
5.85	5.93	6.02	6.10	5.18	6.25	5.43
0.5	-0.3	-0.3	-0.3	0.3	-0.3	0.5

Actinides ‡		
90Th	91 Pa	92 U
6.95	?	6.08
0.5	0.3	0.3

Ionisation Potential 11.26 14.53 Electron

1.263 -0.07

onisation

[eV]

Affinity

Complete suppression in the ion source

Theoretical values of electron affinities from: Electron Affinities of the Lanthanides S.G. Bratsch, Chem. Phys. Lett., 98(2) 113-117 (1983).

Theoretical values of electron affinities from: Electron Affinities of the Actintides, S.G. Bratsch and J.J. Lagowski, Chem. Phys. Lett., 107(2) 136-140 (1984).

	ENII.	%	E A	Done
--	-------	---	-----	------

IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
1 H 13.59 0.754			Ionizatior Electron	Potential Affinity			2 He 24.48 0.078 [*]
3Li	4Be	5 B	6 C	7 N	80	9 F	10Ne
5.39	9.32	8.30	11.26	14.53	13.61	17.42	21.56
0.618	0.195*	0.277	1.263	-0.07	1.461	3.399	< 0
11Na	12Mg	13 AI	14 Si	15 P	168	17 Cl	18Ar
5.14	7.64	5.98	8.15	10.48	10.36	13.01	15.76
0.548	< 0	0.441	1.385	0.747	2.077	3.617	< 0
19 K	20 Ca	31Ga	32 Ge	33As	34 Se	35 Br	36Kr
4.34	6.11	6.00	7.90	9.81	9.75	11.81	14.00
0.501	0.043	0.30	1.2	0.81	2.021	3.365	< 0
37 Rb	39 Sr	49In	50Sn	51Sb	52 Te	53I	54 Xe
4.18	5.70	5.79	7.34	8.64	9.01	10.45	12.13
0.486	< 0	0.3	1.2	1.07	1.971	3.059	< 0
55 Cs	56 Ba	81TI	82 Pb	83 Bi	84 Po	85At	86 Rn
3.89	5.21	6.11	7.42	7.29	8.42	9.5	10.75
0.472	< 0	0.2	0.364	0.946	1.9	2.8	< 0

*Metastable

🚢 🎺 🛤

Done

	Transition Elements										
21 Se	22 Ti	23 V	24Cr	26 Mn	26Fe	27 Co	28 Ni	29 Cu	30Zn		
6.54	6.82	6.74	6.77	7.44	7.87	7.86	7.64	7.73	9.39		
0.188	0.079	0.525	0.666	<0	0.163	0.661	1.156	1.228	<0		
39 Y	40Zr	41 Nb	42 Mo	43 Te	44Ru	46 Rh	46Pd	47 Ag	49 Cd		
6.38	6.84	6.88	7.10	7.28	7.37	7.46	8.34	7.58	8.99		
0.307	0.426	0.893	0.746	0.55	1.05	1.137	0.557	1.302	< 0		
57La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 I r	79 Pt	79Au	80Hg		
5.58	7.0	7.89	7.98	7.88	8.7	9.1	9.0	9.22	10.44		
0.5	~0	0.322	0.815	0.15	1.1	1.565	2.128	2.309	<0		

Lanthanides †						
58Ce	59 P r	60Nd	61Рш	62Sm	63Eu	64 G d
5.47	5.42	5.49	5.55	5.63	5.67	6.16
0.5	0.0	-0.3	-0.3	0.3	-0.3	0.5
65 Tb	66Dy	67 Ho	68Er	69Тш	70 Yb	71Lu
5.85	5.93	6.02	6.10	5.18	6.25	5.43
0.5	-0.3	-0.3	-0.3	0.3	-0.3	0.5

Actinides ‡		
90 Th	91 Pa	92 U
6.95	?	6.08
0.5	0.3	0.3

Theoretical values of electron affinities from: Electron Affinities of the Lanthanides S.G. Bratsch, Chem. Phys. Lett., 98(2) 113-117 (1983).

Theoretical values of electron affinities from: Electron Affinities of the Actintides, S.G. Bratsch and J.J. Lagowski, Chem. Phys. Lett., 107(2) 136-140 (1984).

[eV]	⁶⁰ Fe	⁶⁰ Ni
lonization Potential	7.87	7.64
Electron Affinity	0.163	1.156

bnisation

Ni makes much more likely neg. ions!

Trick:

. . .

-

FeO⁻ and NiO⁻ have about the same (high) electron affinity

Member of the Helmholtz Association

Quasi-Simultaneous Measurements Bouncer

Tandem: Getting Rid of Molecules Bouncer

High-Energy (+ ions)

Be²⁺

6 MV Tandem Accelerator

10 m

- Strip ions to 2+ \rightarrow highest efficiency
- Destroy molecules
 - Major advantage of AMS
- Accelerate

AMS Ion Sources Low-Energy (- ions)

Magnet

BeO⁻

Member of the Helmholtz Association Georg Rugel | Institute of Ion Beam Physics and Materials Research I www.hzdr.de | g.rugel@hzdr.de

Member of the Helmholtz Association

Typical performance data DREAMS

B 10	B 11
19.9	80.1
σ 0.3 σ _{n, α} 3840 σ _{n, p} 0.007	σ 0.005
Be 9	Be 10
100	<mark>1.387·</mark> 10 ⁶ a
σ 0.0088	β ⁻ 0.6 no γ σ <0.001

0.5 mg BeO ¹⁰Be/⁹Be: 10⁻¹² at/at \rightarrow 1.2 * 10⁷ at ¹⁰Be Total efficiency: 1:1400 \rightarrow 6.6 * 10³ cts ¹⁰Be at detector Blank: 5 * 10⁻¹⁶ (¹⁰Be/⁹Be)

0.3 mg Al₂O₃ ²⁶Al/²⁷Al: 10⁻¹² at/at \rightarrow 7 * 10⁵ at ²⁶Al Total efficiency: 1:2000 \rightarrow 350 cts ²⁶Al at detector Blank: 6 * 10⁻¹⁶ (²⁶Al/²⁷Al)

Tandem Accelerator Laboratory Garching Part of the MLL (Maier Leibnitz Laboratory) Ludwig Maximilians Universität and Technische Universität München

Member of the Helmholtz Association

Low-energy side of the Tandem

High-energy side of the Tandem

e.g.: ⁶⁰Ni¹¹⁺ + ⁶⁰Fe¹¹⁺ isobars not yet suppressed

Isobar Separation in a Gas-filled Magnet

Isobaric suppression with GAMS-setup:

- 10⁶: ⁷⁹Se
- 10⁸: ⁵³Mn, ⁵⁹Ni, ⁶³Ni
- **10¹¹:** ⁶⁰Fe (∆*Z* = 2)

Gas-filled Analyzing Magnet System

9 "independent" signals

spectra for calibration; sample: ⁶⁰Fe/Fe = 5 ·10⁻¹²

 $Ni/Fe \approx 10^{-5} = 80^{-5} = 10^{-5}$ dE1 dE2 ⁶⁰Fe ⁶⁰Fe ⁶⁰Ni 1000<u></u> 1000 position position position

4000<u></u>

Page 39

 E_{tot}

spectra for crust sample: 60 Fe/Fe ~ $2 \cdot 10^{-15}$

with windows

spectra for crust sample: 60 Fe/Fe = 1.4 \cdot 10⁻¹⁵ with windows

Member of the Helmholtz Association

some numbers

1 μA ⁵⁶ FeO ⁻	=>	6.10 ¹² /sec
transmission 5%	=>	3.10 ¹¹ /sec
for ⁶⁰ Fe/ ⁵⁶ Fe = 10 ⁻¹⁵	=>	$3 \cdot 10^{-4}$ /sec = 1event/hour
10 mg 56Fe	=>	10 ²⁰ atoms
1 μA ⁵⁶ FeO ⁻	=>	6.10 ¹² atoms/sec
neg. ion yield 10 ⁻³	=>	6.10 ¹⁵ atoms/sec used
sample lasts for	=>	$1.5 \cdot 10^4$ sec = 4 hours

Slide from Thomas Faestermann

Member of the Helmholtz Association

Member of the Helmholtz Association Georg Rugel | Institute of Ion Beam Physics and Materials Research I www.hzdr.de | g.rugel@hzdr.de

Live radioactivity as signature of nearby SNe

Search for long-lived, SN produced radionuclides with negligible abundance inside the solar system:

¹⁰Be, ²⁶AI, ³⁶CI, ⁵³Mn, ⁵⁹Ni, ⁶⁰Fe, ¹²⁹I, ¹⁴⁶Sm, ²⁴⁴Pu

Ellis et al. ApJ 470(1996)1227, Korschinek et al., Radiocarbon 38(1996)68

Slide from K. Knie, <2000

Some radionuclides		⁵⁵ Fe	2.7 years
		⁴⁴ Ti	60 60
measured wi	th AMS	⁶³ Ni	100
		³² Si	140
	Independent of hal	f-life	
		14 C	5 730
fundan antal uk		59 Ni	75 000
fundamental pr	Independent of san	nple mass	
П		⁸¹ Kr	230 000
		⁷⁹ Se	280 000
		³⁶ Cl	301 000
		²⁶ Al	720 000
		¹⁰ Be	1 388 000
マフ		⁶⁰ Fe	2 600 000
\mathbf{V}		⁵³ Mn	3 600 000
applied science	es	¹⁸² Hf	8 900 000
atom c	ounting of radionuc	lides via isotop	e ratio measurements
	²³⁹⁻²⁴⁴ Pu, ²⁴⁷ Cm - 81 000 000		
new: ⁵⁵ Fe, ⁶⁸ Ge, ⁹³ Zr, ¹⁰⁶ Pd, ¹³⁵ Cs, ¹⁴⁶ Sm, ²⁰² Pb, ²¹⁰ Bi, ²²⁶ Ra, ²²⁹ Th, stable,			

Slide from Anton Wallner

Measurement of Cross Sections

online method

detection of prompt γ-rays of reaction product (characteristic)

- > or: recoil separator technique
- if continous E-distribution: + TOF
- all reaction products accessible
- radioactive beams

offline method

- > activation technique:
 - Sample irradiation
 - Determination of reaction product
- > quasi-stellar spectrum at once
- sensitive technique
 - o detects decay products
 - needs radioactive samples (not too long half-life)
 - atom counting (AMS)
 - related to few applications
 - most sensitive

Different systematic uncertainties involved

Systematic deviations in AMS-TOF (n, γ) measurements

Slide from Anton Wallner

Applications of AMS to Astrophysics

Nuclear reaction data - cross-section measurements

- ⁹Be(n, γ)¹⁰Be, ¹³C(n, γ)¹⁴C, ¹⁴N(n,p)¹⁴C
- ³⁵Cl(n, γ)³⁶Cl, ⁴⁰Ca(n, γ)⁴¹Ca
- ⁵⁴Fe(n, γ)⁵⁵Fe, ⁵⁶Ni(n, γ)⁵⁹Ni,
 ⁶²Ni(n, γ)⁶³Ni, ⁷⁸Se(n, γ)⁷⁹Se,
 - ²⁰⁹Bi(n, γ) ²¹⁰Bi,

Nucleosynthesis of elements in stars

all reactions: identical irradiation geometry

Slide from Anton Wallner

Member of the Helmholtz Association

Maxwellian averaged cross sections

Experiment KIT

(1) Activation(2) Offline – AMS measurement

Slide from Anton Wallner

AMS basics

- AMS determines isotope ratios atom counting technique
- ¹⁴C/¹²C radiocarbon dating
- highest sensitivity: 10⁻¹² 10⁻¹⁶
- no isobaric background (<-> ICPMS) (molecules are completely destroyed)
- isotopic background clearly identified

...radionuclides

Slide from Anton Wallner

New group Prof. Anton Wallner at TU Dresden with focus on AMS and astrophysics

Anton Wallner's group at HZDR

