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Fission

Fission (1938): 

- Strong deformation of a heavy nucleus
(actinides)

- scission into two lighter ones (stochastic)

- large emission of energy (𝛾 and n)

Still an active research field:

- Production of exotic nuclei

- Energy production in reactors
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from
T Marchi et al 2020 
J. Phys.: Conf. Ser. 
1643 012036 
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Fission

Behaviour is sum of macro-
(Liquid Drop) and microscopic effects
(Shells)

e.g. : Asymmetric mass distributions (low 
energy)
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from [1]
A N Andreyev et al 
2018 Rep. Prog. Phys. 
81 016301

Fission plays a role in the r-process nucleosynthesis

Neutron captures bring to the formation of actinides Low fission barrier

(n,fission) reactions limit the production of super-heavy

Precise fission yields are needed to calculate the final r-process abundances

To improve models, precise measurements are needed

See also [2]
G. Martinez-Pinedo et al. 

Progress in Particle and 
Nuclear Physics 59 (2007) 

199–205
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Fission Observables

- Fission Fragments Mass Distributions (FFMD)

Asymmetric distribution in low-energy regime
Symmetric distribution with higher energy

From [1]
K. Hirose et al. 
Phys Rev. Lett., 
119:222501,
2017
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Fission Observables

- Fission Fragments Mass Distributions (FFMD)

Asymmetric distribution in low-energy regime
Symmetric distribution with higher energy

- Fission Fragments Charge Distributions

Stability of Z of heavier fragment [2]

[2]  K.-H. Schmidt et al. NPA, 665:382, 2000

from [3] D. Ramos et al. Phys. Rev. C, 97(5):054612, 2018
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Fission Observables

- Fission Fragments Mass Distributions (FFMD)

Asymmetric distribution in low-energy regime
Symmetric distribution with higher energy

- Fission Fragments Charge Distributions

Stability of Z of heavier fragment [2]

from [3] D. Ramos et al. Phys. Rev. C, 97(5):054612, 2018

- Isotopic Fission Fragments Distributions

(N,Z) of fragments allow to study the shell effects

Measured in inverse kinematics,
but not in n-induced fission.

4
[2]  K.-H. Schmidt et al. NPA, 665:382, 2000
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The FALSTAFF spectrometer

[1] D. Dore et al. Nucl. Data Sheet, 2014
[2] D. Doré et al., EPJ Web of Conferences, 2019

Setup for the study of neutron-induced
fission at NFS (GANIL-SPIRAL2) [1]

One arm with 2 ToF SED detectors (MWPC) 
and an axial ionization chamber

Velocity and energy measurement for FFs
Mass distribution [2]

Z distribution?

Ordinary Z-ID methods (∆𝐸 − 𝐸) fail at low 
energy for heavy nuclei (Bragg region)

IDEA:
Axial ionization chamber:
Energy loss profile (dependence on 𝑍)
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Energy loss profile

4096-entry array
10 ns sampling time

Preamp
integration
𝜏 = 120 𝜇𝑠

6



Filippo Angelini 17th Rußbach School on Nuclear Astrophysics

Energy loss profile

4096-entry array
10 ns sampling time

Preamp
integration
𝜏 = 120 𝜇𝑠

6



Filippo Angelini 17th Rußbach School on Nuclear Astrophysics

Energy loss profile

4096-entry array
10 ns sampling time

Preamp
integration
𝜏 = 120 𝜇𝑠

Discrimination between
light and heavy fragments

Info on Z in the shape
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Machine Learning

• Generic algorithms
that improve through
the use of the data

Neural Networks

• Frameworks 

Supervised Unsupervised

1 0

Clustering

---

• Train / Test split of the dataset

• Input features – Target

7
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ML approaches

Supervised learning: Neural Networks

Exp. Data: 

Z is not present

8

Simulation:

Z is known - supervised
Z can be neglected – unsupervised
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ML approaches

Supervised learning: Neural Networks

Dense architecture
• Independent inputs
• Fully connected: many parameters, overfitting

Exp. Data: 

Z is not present
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Z is known - supervised
Z can be neglected – unsupervised
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ML approaches

Supervised learning: Neural Networks

Dense architecture
• Independent inputs
• Fully connected: many parameters, overfitting

Convolutional architecture
• Position independent filters
• Reasonable number of parameters

Exp. Data: 

Z is not present
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Simulation:

Z is known - supervised
Z can be neglected – unsupervised
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Raw energy loss

Raw energy loss:
Fluctuations due to 
random interactions

Geant4 (FIFRELIN)Kaliveda (GEF)

Experimental
resolution: 
fluctuations and 
integration

Experimental resolution: 
integration

252Cf spontaneous fission simulation

Simulated data and preprocessing

9
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Results – Supervised - Simulation
Metrics and graphs are based on the test set

• Networks on raw signals

CNN: 99% accuracy CNN: 83% accuracy

Signals have the information needed to 
retrieve correctly the Z of the fragments

10

KaliVeda Geant4
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Results – Supervised - Simulation
Metrics and graphs are based on the test set

• Networks on raw signals CNN: 99% accuracy CNN: 83% accuracy

• Networks on integrated signals
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CNN: 40% accuracy CNN: 60% accuracy

KaliVeda Geant4

The experimental resolution worsens
the prediction accuracy on signals
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Results – Supervised - Simulation
Metrics and graphs are based on the test set

• Networks on raw signals CNN: 99% accuracy CNN: 83% accuracy

• Networks on integrated signals
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KaliVeda Geant4

The experimental resolution worsens
the prediction accuracy on signals

Dense networks show instability in the training: 
CNNs are preferred

CNN: 40% accuracy CNN: 60% accuracy
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Results – Supervised - Simulation
Metrics and graphs are based on the test set

• Networks on raw signals CNN: 99% accuracy CNN: 83% accuracy

• Networks on integrated signals

10

CNN: 40% accuracy CNN: 60% accuracy

KaliVeda Geant4

• SVD dimensionality reduction CNN: 83% accuracy CNN: 80% accuracy

Great part of the initial accuracy is retrieved

Linear algebra operation that keeps only
the features that impact more on Z
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Application to real data

Comparison between Geant4 and real data

Experimental signal not reproduced

Simulated data has different behaviour

Application of CNN on SVD-reduced exp. data

Results
Experimental traces divided into heavy and light 
NO Z identification for real data
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Application to real data

Comparison between Geant4 and real data

Experimental signal not reproduced

Simulated data has different behaviour

Application of CNN on SVD-reduced exp. data

Results
Experimental traces divided into heavy and light 
NO Z identification for real data

Future steps

Coincident measurement of Z and energy loss profile

FALSTAFF coupled to VAMOS 11
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• Energy loss profiles contain the information to reconstruct the charge

Conclusions
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• CNNs: powerful and stable tools for our task

• The simulations with the added experimental resolution show that 
FALSTAFF can be used for the Z identification

• Training on real labelled data is needed (experiment ongoing)


