Recent results in nuclear astrophysics with indirect methods

17th Russbach School on Nuclear Astrophysics

M. La Cognata

INFN

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

LABORATORI NAZIONALI DEL SUD - INFN, CATANIA, ITALY

Nuclear astrophysics: from the laboratory to the cosmos

The purpose of nuclear astrophysics is to provide reliable nuclear physics input for astrophysical models

Nuclear parameters (cross sections, ...)

Astrophysical models: how a star works

Model input parameters:

magnetic field,

metallicity, ...

PROBLEM: cross sections are needed at energy of 10-100 keV observed in stars and meteorites to validate models Change the model until

 \rightarrow comparison

with abundances

Change the model untilobservablesarematched by predictions

 The set of the set of

Astrophysical models are very complex: assumptions on stellar structure and on stellar parameters (age, mass...) \rightarrow need of multiple independent constraints

The need of indirect methods: direct vs. indirect methods

100

The need of indirect methods: direct vs. indirect methods

Nuclear reaction theory required

ightarrow cross checks of the methods needed

 \rightarrow possible spurious contribution

 \rightarrow additional systematic errors (is the result model independent?)

Advantages include no need of low energies \rightarrow no straggling, no Coulomb suppression, no electron screening **Possibility to access astrophysical energies with high accuracy**

To recall the previous sketch:

R. Tribble et al., Rep. Prog. Phys. 77 (2014) 106901

Nuclear reaction theory

Indirect methods are especially useful in the case of reactions involving **radioactive nuclei**

- Higher cross sections
- Possibility to study reactions induced by neutrons on radioactive nuclei
- Reactions among unstable nuclei
- Easier experimental procedures

PART 1: ANC

The ³He(α,γ)⁷Be and the ⁶Li(p, γ)⁷Be scientific cases

The zero-energy astrophysical factor of the ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ shows a very large scatter. There is no general agreement between measurement (prompt vs activation) and calculations \rightarrow NEED OF NEW INDEPENDENT DATA The detection of the neutrinos coming directly from the core of the Sun became more and more precise after the construction of larger and more efficient neutrino detectors

Neutrinos are released in the β decay of the ⁷Be, ⁸B, ¹³N, ¹⁵O isotopes produced in the p-p chain and in the CNO cycle.

The flux of the p–p neutrinos was measured with a precision of about 3.4% by the BOREXINO, SNO and Super-Kamiokande collaborations

The precise neutrino flux measurements can constrain the Standard Solar Model (SSM)

However, at present the uncertainties on cross sections are far too high, typically of the order of 5-8% contrary to the 3% precision required

The ANC approach has the opportunity

The ³He(α,γ)⁷Be and the ⁶Li(p, γ)⁷Be scientific cases

Blue solid triangles → D. Piatti et al., Phys. Rev. C 102, 052802(R) (2020) (including systematic error)

Red filled circles \rightarrow J. J.He et al., Phys. Lett. B 725, 287 (2013)

Direct measurements show a totally different low energy trend

Lithium is a key elements in astrophysics as big bang nucleosynthesis models coupled to chemical evolution models fail to find an agreement between predictions and observations.

⁷Li is the most abundant isotope, produced in the BBN and in stars

⁶Li is almost exclusively produced by cosmic rays and the possibility of a primordial ⁶Li plateau, like the one for ⁷Li, is not presently confirmed

Since the production mechanism of ⁶Li and ⁷Li are completely different, the ⁶Li/⁷Li isotopic ratio can be used either to constrain the lithium production mechanisms and/or the galactic enrichment processes

\rightarrow an accurate determination of the ⁶Li(p, γ) ⁷Be astrophysical S factor is needed.

About the ANC (Asymptotic Normalization Coefficient) method

Radiative $p(\alpha)$ capture at stellar energies

• Classical barrier penetration problem

ANC \Rightarrow amplitude for tail of overlap function \rightarrow can be deduced from transfer reaction XS

The ⁶Li(³He,d)⁷Be measurement

The experimental team

The ASFIN collaboration

Experimental setup

³He beams by: **singletron accelerator @ Department of Physics and Astronomy** (DFA) of the University of Catania (Italy) **and FN tandem accelerator @ John D. Fox Superconducting Accelerator** Laboratory at Florida State University (FSU), Tallahassee (FL), USA

Angular distributions were measured at $E_{lab} = 3 \text{ MeV}$ and $E_{lab} = 5 \text{ MeV}$ using silicon DE-E telescopes on a turntable. Additional monitor detectors were placed at symmetric angles with respect to the beam axis to check target thickness and for normalization.

⁶LiF (enriched in ⁶Li by 95%) and pure ⁶Li targets (enriched in ⁶Li by 98%) were used

Experimental spectra

Angular distributions of the ⁶Li(³He,d)⁷Be reaction populating the ground ((a) and (c)) and first (0.429 MeV) excited ((b) and (d)) states of ⁷Be at the projectile ³He energies of 3 ((a) and (b)) and 5 ((c) and (d)) MeV.

Gray lines are the calculated angular distributions, for p-and α -transfer (forward and backward hemisphere, respectively) \rightarrow possibility to deduce the ANC's for both channels (no interference at the peaks)

The ³He(α,γ)⁷Be S₃₄(0) using ANC

- Lower S₃₄(0) values favored, with a total uncertainty equal to 4.7%.
- More than 50% of the error budget is due to the non-peripherality of the transfer process

The post-form DWBA calculation contains:

- ✓ s-wave ANC values for the d+p →³He and the d+ α →⁶Li channels
- Test of the dependence on the choice of the optical potentials
- $\checkmark\,$ Test of the peripheral nature of the reaction
- ✓ channels coupling effects (CCE)

Further improvements to be implemented:

- Test one-step process in modelling the transfer
- Test the coupling between ground and excited states of ⁶Li and ⁷Be
- Perform full coupled-channel analysis to derive the ³He+⁴He and the *p*+⁶Li ANCs

³He(α,γ)⁷Be PLB 807 (2020) 135606

The ${}^{6}Li(p,\gamma)^{7}Be$ astrophysical factor

Green line: astrophysical S factor obtained by using the weighted average ANC values from the near-barrier proton transfer ${}^{6}\text{Li}({}^{3}\text{He},d){}^{7}\text{Be}$ reaction at $E_{\text{beam}} = 3$ and 5 MeV **Black line:** astrophysical S factor obtained from the analysis of the ${}^{6}\text{Li}(p,\gamma){}^{7}\text{Be}$ S-factor of Piatti et al. (2020)

Our result strongly disfavors the resonant trend claimed by He et al. (2014)

Two approaches:

- the weighted means of the ANCs from the analysis of the ⁶Li(³He,d)7Be transfer were used to calculate the total astrophysical S factor for the ⁶Li(p,γ)⁷Be reaction using the modified two-body potential method [Igamov and R. Yarmukhamedov (2019)]. In the calculation M1 and E2 are neglected as their contribution is lower than 1% at these energies
- 2. the ANCs for the ⁶Li+p \rightarrow ⁷Be(g.s.) and ⁶Li+p \rightarrow 7Be(0.429 MeV) channels were derived from the experimental total astrophysical S factor and the branching ratios of Piatti et al. (2020) and then (**after checking the actual agreement**), we also calculated the astrophysical factor of the ⁶Li(p, γ)7Be reaction within the MTBPM

⁶Li(p,γ)⁷Be PRC 104 (2021) 015807

PART 2: THM

The ${}^{27}Al(p,\alpha){}^{24}Mg$ reaction

MgAl cycle in massive stars

²⁶Al/²⁷Al abundance ratio

Mg-Al Cycles It is ignited at temperatures > 0.03 GK and it is important to determine the abundances of medium mass nuclei

²⁶Al abundance is used to estimate the number of Galactic neutron stars and, therefore, of neutron star mergers (sources of GW). The
²⁶Al/²⁷Al is generally estimated, so it is influenced by ²⁷Al abundance predictions

The Trojan Horse Method (THM)

<u>When narrow resonances dominate</u> the S-factor the reaction rate can be calculated by means of the resonance <u>strengths and resonance energies only</u>. Both can be deduced from the THM cross section.

Let's focus on resonance strengths

$$\omega \gamma_i = \frac{2J_i + 1}{(2J_p + 1)(2J_{27}\text{Al})} \frac{\Gamma_p^i \Gamma_\alpha^i}{\Gamma_{\text{tot}}}$$

The strengths are calculated from resonance partial widths

What is its physical meaning? Area of the Breit-Wigner describing the resonance

Advantage:

no need to know the resonance shape (moderate resolution necessary)

THM: in the case of resonant reactions a metastable state is formed (²⁸Si), escaping the nuclear interaction region and later decaying to α +²⁴Mg

$$\omega \gamma_i^{\text{THM}} \approx \omega_i N_i \frac{\Gamma_{p, \text{ s.p.}}^i}{\sigma_{(d,n)}(\theta_n^{c.m.})}$$

In the THM approach we determine the strength in arb.units. Normalization to a known resonance is necessary

THM => Transfer to the continuum

ANC => Transfer to a bound state

In both cases peripherality has to be enforced

THM: Basic features

Plane Wave Impulse Approximation:

- beam energy >> a = x ⊕ b breakup Q-value
- projectile wavelength k⁻¹ << x b intercluster distance
 - + plane waves in the entrance and exit channel
- → the 3-body cross section factorizes:

- KF kinematic factor
- $\phi(p_b)^2$ spectator momentum distribution
- dσ^{off}/dΩ off-shell cross section or "nuclear" (N) cross section

 $d\sigma^{off}/d\Omega \rightarrow d\sigma/d\Omega$ (on shell)

The penetration factor P_1 has to be introduced:

The full THM: the resonant case (A. Mukhamedzhanov)

THM vs. OES astrophysical factor Direct data: THM data:

$$S(E_{xA}) = \frac{\mu_{cC} \mu_{xA}}{4\pi^2} \frac{k_{cC}}{k_{xA}} \frac{1}{\hat{J}_x \hat{J}_A} E_{xA} e^{2\pi \eta_{xA}} \qquad S^{\text{TH}}(E_{xA}) = \frac{\mu_{cC} \mu_{sF} \mu_{aA}}{2\pi^5} \frac{k_{cC} k_{sF}}{k_{aA}} \frac{1}{\hat{J}_a \hat{J}_A} E_{xA} e^{2\pi \eta_{xA}} \\ \times \left| \sum_{\nu,\tau=1}^2 \tilde{V}_{\nu cC}(E_{cC}) [\mathbf{D}^{-1}]_{\nu\tau} \tilde{V}_{\tau xA}(E_{xA}) \right|^2 \qquad \times \Gamma_{2xA}(E_{xA}) \left| \sum_{\nu,\tau=1}^2 \tilde{V}_{\nu cC}(E_{cC}) [\mathbf{D}^{-1}]_{\nu\tau} L_{2\tau}(\mathbf{k}_{sF}, \mathbf{k}_{aA}) \right|^2$$

Remember that:

$$\tilde{\Gamma}_{\nu c}(E_c) = 2\pi |\tilde{V}_{\nu c}(E_c)|^2$$

is the formal partial resonance width for the decay of this level into channel c=x+A or c=b+B. Where:

$$L_{2\tau}(\mathbf{k}_{sF}, \mathbf{k}_{aA}) = \frac{M_{\tau}(\mathbf{k}_{sF}, \mathbf{k}_{aA})}{M_2(\mathbf{k}_{sF}, \mathbf{k}_{aA})}$$

It can be calculated (DWBA, CDCC, PWBA...) or taken from measurements

The matrix D^{-1} and $V_{vcc}(E_{cc})$ are the same in the TH and OES astrophysical factors. The THM S-factor does not contain the penetration factor, which has to be inserted for comparison with direct data

Moreover: exploring negative energies with the THM

It is possible to achieve negative energies in the A-x channel

How to deal with negative energies? what is their meaning?

Standard R-Matrix approach cannot be applied to extract the resonance parameters of the A(x,c)C reaction because x is virtual —> Modified R-Matrix is introduced instead (A. Mukhamedzhanov 2010)

$$\frac{d^2\sigma}{dE_{Cc}\,d\Omega_s} \propto \frac{\Gamma_{(Cc)_i}(E)\,|M_i(E)|^2}{(E-E_{R_i})^2 + \Gamma_i^2(E)/4}$$

At negative energies M^2 is given by the product of the Whittaker function and the ANC of the F state populated in the transfer reaction

Merging together ANC and THM —> deep connection of these two indirect methods

The ²H(²⁷Alp, α^{24} Mg)n reaction study

From LNS Tandem

The experiment was carried out by local people only, though the proposal included 25 people from 7 countries \rightarrow **international effort**

The experiment at INFN-LNS Catania (right after the end of national lockdown in spring 2020) PI: F. Hammache (Orsay) – S. Palmerini (PG)

Reaction channel selection

First the mass of the undetected particle is **<u>deduced</u>** from the energy conservation law:

 $Y=E_{beam}-E_{A}-E_{C}$ $X=p_{A}^{2}/2u$

No additional peaks are found, meaning that no spurious processes are seen However, some background is present, but to the percent level for ²⁴Mg ground state contribution

Two peaks for ²⁴Mg gs and 1st excited

Arrows: theoretical Qvalues

Evidence of the quasi-free reaction mechanism

When the breakup is quasifree, *n* retains the same momentum as inside *d* (adiabatic process). **So** *n***momentum distribution should be the same as in** *d*

The red curve is the theoretical one: normalization is the only fitting parameter

Extraction of the resonance strengths

Energy in cm (keV) [from STARLIB]	Jpi	Strength (eV) [from STARLIB]	error (eV)	Strength (eV) [from THM]	error (eV)
71.5	2+	2.47E-14	up lim	8.23E-15	up lim
84.3	1-	2.60E-13	up lim	1.67E-14	3.2E-15
193.5	2+	3.74E-07	up lim	2.50E-07	up lim
214.7	3-	1.13E-07	up lim	4.36E-08	up lim
486.74	2+	0.11	0.05	0.107	0.021
609.49	3-	0.275	0.069	0.245	0.054
705.08	1-	0.52	0.13	0.261	0.065
855.85	3-	0.83	0.21	0.61	0.35
903.54*	3-	4.3	0.4	4.20	0.38
1140.88	2+	79	27	73	14
1316.7	2+	137	47	124	28
1388.8*	1-	54	15	61	12

* Normalization strengths

- Following discussion in APJ 708 (2010) 796 the red line is a fit with a sum of Gaussian functions, with fixed energies and fixed widths (from MC). Heights are proportional to strengths
- The most intense resonances in STARLIB were all included in the fit down to about 200 keV

Calculation of the reaction rate

The reaction rate is the main input of astrophysical models. It is the folding of the cross section and of the Maxwell-Boltzmann distribution.

If the cross section is dominated by narrow resonances as in this case, it can be written as

$$N_A \langle \sigma v \rangle = \frac{1.5399 \times 10^{11}}{\left(\frac{M_0 M_1}{M_0 + M_1} T_9\right)^{3/2}} \sum_i (\omega \gamma)_i e^{-11.605 E_i / T_9}$$

In units of cm³mol⁻¹s⁻¹.

Therefore, the rate is determined by resonance energies and strengths.

The reaction rate was calculated using **RatesMC**, a MC code to calculate the reaction rate taking lognormal distributions for the measured strengths, and Porter-Thomas distributions in the case only upper limits are available

S. Palmerini et al. Eur. Phys. J. Plus (2021) 136: 898 M. La Cognata et al. Phys. Lett. B (2022) 826: 136917

The green line is the THM recommended rate

The comparison with the results in the literature shows a reduced reaction rate due to the 84 keV resonance

Summary

1. introduction: what is nuclear astrophysics? How to measure nuclear reactions at astrophysical energies

- 2. Indirect methods: the ANC. Recent results on the ${}^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$ and the ${}^{6}\text{Li}(p,\gamma)^{7}\text{Be}$ reactions
 - 3. Indirect methods: the THM. Study of the ${}^{27}Al(p,\alpha){}^{24}Mg$ reaction through the ${}^{21}H({}^{27}Alp,\alpha{}^{24}Mg)n$ process
 - 4. Concluding: indirect methods are alternative and sometimes unique tools to explore astrophysical energies

The ⁶Li(³He,d)⁷Be team

G. G. Kiss,^{1,*} M. La Cognata⁰,^{2,†} R. Yarmukhamedov,^{3,‡} K. I. Tursunmakhatov,^{3,4} I. Wiedenhöver,⁵ L. T. Baby,⁵ S. Cherubini,^{2,6} A. Cvetinović,² G. D'Agata,⁷ P. Figuera,² G. L. Guardo,^{2,6} M. Gulino,^{2,8} S. Hayakawa,⁹ I. Indelicato,^{2,6} L. Lamia,^{2,6,10} M. Lattuada,^{2,6} F. Mudò,^{2,6} S. Palmerini,^{11,12} R. G. Pizzone,² G. G. Rapisarda,^{2,6} S. Romano,^{2,6,10} M. L. Sergi,^{2,6} R. Spartà,^{2,6} C. Spitaleri,^{2,6} O. Trippella,^{11,12} A. Tumino,^{2,8} M. Anastasiou,⁵ S. A. Kuvin,⁵ N. Rijal,⁵ B. Schmidt,⁵ S. B. Igamov,³ S. B. Sakuta,¹³ Zs. Fülöp,¹ Gy. Gyürky,¹ T. Szücs,¹ Z. Halász,¹ E. Somorjai,¹ Z. Hons,⁷ J. Mrázek,⁷ R. E. Tribble,¹⁴ and A. M. Mukhamedzhanov¹⁴ ¹Institute for Nuclear Research (ATOMKI), H-4001 Debrecen, POB.51, Hungary ²Laboratori Nazionali del Sud - INFN, Via S. Sofia 62, 95123 Catania, Italy ³Institute of Nuclear Physics, Uzbekistan Academy of Sciences, 100214 Tashkent, Uzbekistan ⁴Physical and Mathematical Department, Gulistan State University, 120100 Gulistan, Uzbekistan ⁵Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ⁶Dipartimento di Fisica e Astronomia "E. Majorana," Università di Catania, 95123 Catania, Italy ⁷Nuclear Physics Institute of the Czech Academy of Sciences, 250 68 Řež, Czech Republic ⁸Facoltà di Ingegneria e Architettura, Università di Enna "Kore", 94100, Enna, Italy ⁹Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, Saitama 351-0198, Japan ¹⁰Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania 95123, Italy ¹¹Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy ¹²Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy ¹³National Research Center "Kurchatov Institute". Moscow 123182. Russia ¹⁴Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

Thanks to our international research teams

The ${}^{2}H({}^{27}AI,a{}^{24}Mg)n$ team

M. La Cognata^a, S. Palmerini^{b,c}, P. Adsley^{d,e}, F. Hammache^f, A. Di Pietro^a, P. Figuera^a, R. Alba^a, S. Cherubini^{a,g}, F. Dell'Agli^h, G.L. Guardo^{a,g}, M. Gulino^{a,i}, L. Lamia^{a,g,j}, D. Lattuada^{a,i}, C. Maiolino^a, A. Oliva^{a,g}, R.G. Pizzone^a, P.M. Prajapati^a, S. Romano^{a,g,j}, D. Santonocito^a, R. Spartá^{a,g}, M.L. Sergi^{a,g}, A. Tumino^{a,i}

^aIstituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, 95123, Italy
^bDipartimento di Fisica e Geologia, Università degli Studi di Perugia, Perugia, 06123, Italy
^cIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia, 06123, Italy
^diThemba Laboratory for Accelerator Based Sciences, Somerset West, 7129, South Africa
^eSchool of Physics, University of the Witwatersrand, Johannesburg, 2050, South Africa
^fUniversité Paris-Saclay, CNRS IN2P3, IJCLab, Orsay, 91405, France
^gDipartimento di Fisica e Astronomia "Ettore Majorana", Università degli Studi di Catania, Catania, 95123, Italy
^hINAF, Observatory of Rome, Monte Porzio Catone (RM), 00077, Italy
ⁱFacoltà di Ingegneria e Architettura, Università degli Studi "Kore", Enna, 94100, Italy
^jCentro Siciliano di Fisica Nucleare e Struttura della Materia, CSFNSM, Catania, 95123, Italy

THE 11[™] EUROPEAN SUMMER SCHOOL ON **EXPERIMENTAL NUCLEAR ASTROPHYSICS**

Primordial Nucleosynthesis and Early Stars, Stellar Evolution, Hydrostatic and Explosive Nucleosynthesis, Plasmas in Stars and Laboratories, Detectors and Facilities for Nuclear Astrophysics, Experiments with rare and radioactive isotopes, Indirect Methods

12–19 JUNE 2022

SCIENTIFIC COMMITTEE

M. Aliotta, C. Bertulani, M. Busso, E. Chavez, A. Coc, M. El Eid, T. Kajino, K.L. Kratz, S. Kubono, K. Langanke, J. Josè, T. Motobayashi, O. Straniero, G. Rogachev, S. Romano, C. Spitaleri, L. Trache, R.E. Tribble, Wei Liping, M. Wiescher

LOCAL COMMITTEE

R.G. Pizzone (Chair), L. Lamia (co-Chair), G. D'Agata, G.L. Guardo, M. La Cognata, D. Lattuada, A.A. Oliva, R. Spartà, A. Tumino

SCIENTIFIC SECRETARY

G.G. Rapisarda and M.L. Sergi astro2022@Ins.infn.it

SECRETARY V. Potenza

Università di Catania

INFRA

Thank you for your attention