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Nuclear astrophysics: from the laboratory to the cosmos

The purpose of nuclear Nuclear
astrophysics is to provide parameters
reliable nuclear physics input (cross
for astrophysical models sections, ...)

Elemental yield
—> comparison
with abundances
observed in stars
and meteorites to
validate models

Astrophysical
models: how a
star works

PROBLEM: cross
sections are
needed at energy

of 10-100 keV Model input & = Change the model until

parameters: observables are

magnetic field, o
metallicity, ... matched by predictions

Astrophysical models are very complex: assumptions on stellar structure and on
stellar parameters (age, mass...) 2 need of multiple independent constraints



The need of indirect methods: direct vs. indirect methods

How to measure the A+x—=>¢c+C

. . . ?
reaction in a direct way: Detector >

kinematic observables
- Energy
- Emission angle

Target (A) & Particle identification

Reaction
product (c)

It looks quite simple!

S(E) = Eo(E)exp(27n)

However, several reasons make the low-
energy region of astrophysical interest

difficult to access
Coulomb barrier suppression of the cross

section

Cosmic background and systematic errors
due to, e.g., straggling in the target
Electron screening hiding the nuclear
cross section

screened

Ue= 219 eV *He(d p)*He

S(E) [MeV b]




The need of indirect methods: direct vs. indirect methods

Nuclear reaction theory required

Several
Entrance channel: reaction Reaction products —> cross checks of the methods needed
A+a mechanism C+c+... - possible spurious contribution

- additional systematic errors (is the
result model independent?)

Advantages include no need of low energies = no straggling, no Coulomb
suppression, no electron screening
Possibility to access astrophysical energies with high accuracy Indirect methods are especially

useful in the case of reactions

involving radioactive nuclei
Higher cross sections
Possibility to study reactions

To recall the previous sketch:

induced by neutrons on
radioactive nuclei
Reactions among unstable
nuclei

Easier experimental
procedures

Nuclear reaction theory

R. Tribble et al., Rep. Prog. Phys. 77 (2014) 106901




PART 1: ANC



The 3He(a,y)’Be and the ‘Li(p,y)’Be scientific cases
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The zero-energy astrophysical factor of the 3He(a,y)’Be
shows a very large scatter. There is no general agreement

between measurement (prompt vs activation) and
calculations > NEED OF NEW INDEPENDENT DATA

The detection of the neutrinos coming directly from the
core of the Sun became more and more precise after
the construction of larger and more efficient neutrino
detectors

Neutrinos are released in the B decay of the "Be, 8B, 13N,
150 isotopes produced in the p—p chain and in the CNO
cycle.

The flux of the p—p neutrinos was measured with a
precision of about 3.4% by the BOREXINO, SNO and
Super-Kamiokande collaborations

The precise neutrino flux measurements can constrain
the Standard Solar Model (SSM)

However, at present the uncertainties on cross sections
are far too high, typically of the order of 5-8% contrary

to the 3% precision required

The ANC approach has the opportunity



The 3He(a,y)’Be and the ‘Li(p,y)’Be scientific cases
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Blue solid triangles = D. Piatti et al., Phys. Rev. C 102,
052802(R) (2020) (including systematic error)

Red filled circles = J. J.He et al., Phys. Lett. B 725, 287
(2013)

Direct measurements show a totally different low
energy trend

Lithium is a key elements in astrophysics as big bang
nucleosynthesis models coupled to chemical evolution

models fail to find an agreement between predictions
and observations.

’Li is the most abundant isotope, produced in the BBN
and in stars

6Li is almost exclusively produced by cosmic rays and
the possibility of a primordial °Li plateau, like the one
for “Li, is not presently confirmed

Since the production mechanism of ®Li and ’Li are
completely different, the 6Li/’Li isotopic ratio can be
used either to constrain the lithium production
mechanisms and/or the galactic enrichment processes

—> an accurate determination of the Li(p,y) 'Be
astrophysical S factor is needed.



About the ANC (Asymptotic Normalization Coefficient) method

Radiative p (o) capture at stellar energies

— +
e Classical barrier penetration problem G o« ‘ M ‘ M —< er (Fap) W™ (Iap) >
V Direct radiative capture rB>RN W_11 |4i(2KBper)
Low B.E.: |Ap( p) Cé\p AT
p K
g , Outside the nuclear radius
//, ]/ . -
// ‘\“‘\‘ Peripheral reaction Find: O oc(C E/;O)z
I SE—

L =
e l[ow energies = capture at[large radii ] |

e very small cross sections
The cross section is determined by ANCs / \\
d(a+p) a

ANC = amplitude for tail of overlap function = can be deduced from transfer reaction XS



The SLi(*He,d)’Be measurement
Experimental setup

3He beams by: singletron accelerator @ Department of Physics and
Astronomy (DFA) of the University of Catania (Italy) and FN tandem
accelerator @ John D. Fox Superconducting Accelerator Laboratory at
Florida State University (FSU), Tallahassee (FL), USA

Angular distributions were measured at E,,, = 3 MeV and E,,, =5 MeV
using silicon DE-E telescopes on a turntable. Additional monitor
detectors were placed at symmetric angles with respect to the beam
axis to check target thickness and for normalization.

SLiF (enriched in ¢Li by 95%) and pure ‘Li targets (enriched in ¢Li by 98%)
were used

The experimental feam

AsIFIIN

The ASFIN collaboration




Experimental spectra
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G.G. Kiss et al. Physics Letters B 807 (2020) 135606
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Angular distributions of the 6Li(3He,d)’Be reaction populating the ground
((a) and (c)) and first (0.429 MeV) excited ((b) and (d)) states of ’Be at the
projectile 3He energies of 3 ((a) and (b)) and 5 ((c) and (d)) MeV.
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Gray lines are the calculated angular distributions, for p—and a-transfer o0 100 150

(forward and backward hemisphere, respectively) = possibility to deduce O.m [deg]
the ANC’s for both channels (no interference at the peaks)



The 3He(a.,y)’Be S;,(0) using ANC
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= Lower S;,(0) values favored, with a total
uncertainty equal to 4.7%.
= More than 50% of the error budget is due to
the non-peripherality of the transfer process

The post-form DWBA calculation contains:

v" s-wave ANC values for the d+p >3He and the
d+a—>°Li channels

v’ Test of the dependence on the choice of the optical
potentials

v’ Test of the peripheral nature of the reaction

v’ channels coupling effects (CCE)

Further improvements to be implemented:

o Test one-step process in modelling the transfer

o Test the coupling between ground and excited
states of °Li and “Be

o Perform full coupled-channel analysis to derive the
3He+*He and the p+°Li ANCs

SHe(a,y)’Be
PLB 807 (2020) 135606




The SLi(p,y)’Be astrophysical factor

Two approaches:

120 , , ' , ' , . ,

1. the weighted means of the ANCs from the analysis of
the ®Li(3He,d)7Be transfer were used to calculate the
total astrophysical S factor for the °Li(p,y)’Be reaction
using the modified two-body potential method
[Igamov and R. Yarmukhamedov (2019)]. In the
calculation M1 and E2 are neglected as their
contribution is lower than 1% at these energies

S (eV b)

2. the ANCs for the éLi+p—> 7Be(g.s.) and °Li+p—>
7Be(0.429 MeV) channels were derived from the

40 _ ) -
experimental total astrophysical S factor and the
o oz os  os  os o branching ratios of Piatti et al. (2020) and then (after
E (MeV) checking the actual agreement), we also calculated
Green line: astrophysical S factor obtained by using the th.e afstrophysical factor of the °Li(p,y)7Be reaction
weighted average ANC values from the near-barrier proton within the MTBPM

transfer 6Li(*He,d)’Be reaction at E, ., = 3 and 5 MeV
Black line: astrophysical S factor obtained from the analysis
of the bLi(p,y )’Be S-factor of Piatti et al. (2020)

*Li(p,y)’Be
PRC 104 (2021) 015807

Our result strongly disfavors the resonant trend claimed by
He et al. (2014)




PART 2: THM



The ?7Al(p,a)?*Mg reaction TAl(p. o) Mg

1e+01

MgAl cycle in massive stars

1e+00

Reaction Rate Ratio
1e-01

1e-02

v Up to one order of
S B acnitude uncertainty

0.01 0.10 1.00 10.00

26A| abundance is used to estimate
the number of Galactic neutron stars
and, therefore, of neutron star
mergers (sources of GW). The
26A|/27Al is generally estimated, so it is
influenced by 2’Al abundance
predictions

Mg-Al Cycles

It is ignited at
temperatures > 0.03 GK
and it is important to
determine the
abundances of medium
mass nuclei




The Trojan Horse Method (THM)

When narrow resonances dominate the S-factor the reaction rate can be
calculated by means of the resonance strengths and resonance energies only.

Both can be deduced from the THM cross section.

Let’s focus on resonance strengths

27A|

2Ji +1 l“;,l“;; The strengths are calculated

wy; = from resonance partial widths
2J, + 1)(2Jnp) T

What is its physical meaning?
Area of the Breit-Wigner describing the ri In the THM approach we
resonance determine the strength in

THM D S.p. ) o

WYy, ~ w:N.: arb.units. Normalization to a

i i’

Advantage: J(d,n)(gﬁ‘m‘) known resonance is necessary

no need to know the resonance shape
(moderate resolution necessary)

THM => Transfer to the continuum

l ANC => Transfer to a bound state

In both cases peripherality has to be enforced

THM: in the case of resonant reactions a
metastable state is formed (28Si),
escaping the nuclear interaction region
and later decaying to a+?*Mg




J '_..__* _,_s.ihc“features ;

Plane Wave Impulse Approximation:
° beam energy >> a =x @ b breakup Q-value
° projectile wavelength k'! << x — b intercluster distance
+ plane waves in the entrance and exit channel

=» the 3-body cross section factorizes:

dEcdS2cdS,

From the Evaluated through HOES 2-body
experiment a MC code cross section
e KF kinematic factor do°/dQ 2> do/dQ (on shell)
e ¢(p,)* spectator momentum distribution The penetration factor P, has to be
o do°/dQ off-shell cross section introduced:

or “nuclear” (IN) cross section

Zﬂdﬂ'i



The full THM: the resonant case (A. Mukhamedzhanov)

a s> R. Tribble et al., Rep. Prog. Phys. 77 (2014) 106901
X In the latest years, large efforts were made to give a
guantitative justification of THM, to estimate the
A T B uncertainties and improve the description of the
2->3 cross section
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THM vs. OES astrophysical factor
Direct data: THM data:

Hec pxa kec — I_ E,, % M STHE ) = Hee Msi MHan koo ksp 1 E, el

4 : kt A J_l J‘l'. 2w 2 kﬂ A j‘ﬂ j_‘

-

* Z i:rl't'{'[-El'l;.'.} (D I ]L'r ]}I‘ xal E.:. a) x I r-i{E.l.'.-l ) Z 1"_"1 ecl E-‘f'] Il-'_l ]T LZ tlk:r. Kaa)

1=l v, r=]
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Remember that: Where:

JP‘"IT {k_i.'F * k&ri}
Ma(Ksr, Kaa)

I (E) =2V, (E)P

LIT“{.EF' Kaa } -

is the formal partial resonance width
for the decay of this level into channel It can be calculated (DWBA, CDCC, PWBA...) or
c=x+A or c=b+B.

taken from measurements

The matrix D™ and Vycc(Ecc) are the same in the TH and OES astrophysical factors.
The THM S-factor does not contain the penetration factor, which has to be inserted for comparison

with direct data



Moreover: exploring negative energies with
the THM

Using the kinematics of three body reactions:

Eaz =

My + My

s-x Fermi motion #
s-x binding energy

It is possible to achieve negative energies in the A-x channel
How to deal with negative energies? what is their meaning?

Standard R-Matrix approach cannot be applied to extract the resonance parameters of the
A(x,c)C reaction because x is virtual —> Modified R-Matrix is introduced instead (A.

Mukhamedzhanov 2010)
,_) N Ml At negative energies M? is given by the product of the
d“o 1—‘((\'()z (E) |J[, (E)‘“

e Whittaker function and the ANC of the F state populated in
N R I DA SR CIEY the transfer reaction

Merging together ANC and THM —> deep connection of
these two indirect methods




The 2H(?’Alp,a?*Mg)n reaction study
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The experiment was carried out

by local people only, though
the proposal included 25 FAs2s |
people from 7 countries 2>
international effort

INEN

LNS

The experiment at INFN-LNS Catania (right ™ o )
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Reaction channel selection
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First the mass of the undetected particle is deduced
from the energy conservation law:

Y=Ebeam_EA_EC

X=p,2/2u

No additional peaks are found, meaning that no spurious
processes are seen

However, some background is present, but to the percent
level for 2Mg ground state contribution




Evidence of the quasi-free reaction mechanism

d >’S—’<:“

27A| 25Mg

Possible non QF processes

d>T<:5He

27A| 24Mg

When the breakup is quasi-
free, n retains the same
momentum as inside d
(adiabatic process). So n-
momentum distribution
should be the same as in d

The red curve
is the
theoretical
one:
normalization
is the only
fitting
parameter
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Energy in
cm (keV)

[from
STARLIB]

71.5
84.3

193.5

214.7
486.74

609.49
705.08
855.85

903.54*

1140.88
1316.7
1388.8*

* Normalization strengths

Strength (eV)

[from
STARLIB]

2.47E-14
2.60E-13
3.74E-07
1.13E-07
0.11
0.275
0.52
0.83

4.3

79
137
54

error
(eV)

up lim
up lim
up lim
up lim
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0.13
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0.4
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47
15

Strength
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THM]

8.23E-15
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0.107
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0.261
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4.20
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124
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Extraction of the resonance strengths
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* Following discussion in APJ 708 (2010) 796 the
red line is a fit with a sum of Gaussian functions,
with fixed energies and fixed widths (from MC).
Heights are proportional to strengths

* The most intense resonances in STARLIB were all
included in the fit down to about 200 keV



Calculation of the reaction rate

The reaction rate is the main input of
astrophysical models. It is the folding of
the cross section and of the Maxwell-
Boltzmann distribution.

If the cross section is dominated by
narrow resonances as in this case, it can
be written as

11
Ny(ovy = 2230 X103 () 116055/ T,
i

MM, - 3/2
My+M, 9

In units of cm3mol1si,

Therefore, the rate is determined by
resonance energies and strengths.

Reaction Rate Ratio
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Temperature (GK)

The reaction rate was calculated
using RatesMC, a MC code to
calculate the reaction rate taking
lognormal distributions for the
measured strengths, and Porter-
Thomas distributions in the case
only upper limits are available
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The green line is the THM
recommended rate

The comparison with the results in
the literature shows a reduced
reaction rate due to the 84 keV

resonance




Summary

1. infroduction: what is nuclear astrophysics? How to measure
nuclear reactions at astrophysical energies

2. Indirect methods: the ANC. Recent results on the 3He(a,y)’Be and
the ¢Li(p,y)’Be reactions

3. Indirect methods: the THM. Study of the 27Al(p,a)?*Mg reaction
through the 2H(?’ Alp,a2*Mg)n process

4. Concluding: indirect methods are alternative and sometimes
unique tools to explore astrophysical energies
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