The physics of core collapse supernovae

Jérôme Guilet CEA Saclay, Astrophysics Department

Cassiopeia A

Importance of stellar explosions and compact objects

Kinetic energy injection in the instellar medium

Cosmic ray acceleration

Probe of the universe

Birth and merger of compact objects

Source of heavy elements

Discovery of a supernovae

SN1987A: last (almost) galactic SN (Large Magellanic Cloud)

Supernovae lighcurves

Energy injection by radioactive decay

⁵⁶Ni 6.1d ⁵⁶Co ^{78.5d} ⁵⁶Fe

Supernova classification

Supernovae remnants

thermonuclear

supernovae

la

SN 1006

Tycho (1572)

Kepler (1604)

gravitational

supernovae

II, Ibc

Crab (1054)

Cassiopeia A (~1680)

Life and death of a star: different time and spatial scales

Electromagnetic observations days to centuries

Explosion engine :~ 1 second

=> Direct probe with multimessenger observations : neutrinos & gravitational waves

How can a collapse turn into an explosion ?

Core collapse: formation of a neutron star

Proposed explosion mechanisms

Neutrino-driven explosions : favored mechanism for standard SNe

→ today's lecture (and start of tomorrow)

Quark matter transition : uncertain physics, only very massive stars ?

Acoustic mechanism (Burrows+ 2006, 2007): not confirmed by later studies or other groups

Jittering jets (Soker+) : weak physical motivation for the driving of the jets

A multi-physics problem

- General relativity
- Ultra-high density equation of state
- Neutrino-matter interactions sophisticated transport schemes
- Multi-dimensional hydrodynamics (instabilities, turbulence..)
- Magnetic field

To simplify or not to simplify

General relativity

Compactness parameter : $\frac{GM}{rc^2}$

- Neutron star : $r \approx 12 \ km, \frac{GM}{rc^2} \sim 0.2$
- Protoneutron star : $r \approx 40 \ km$, $\frac{GM}{rc^2} \sim 0.05$

Approximations of general relastivistic effects:

- Full general relativity

e.g. Kuroda et al 2012

- CFC approximation (conformal flatness condition)

good approximation for SNe

- e.g. CoCoNut code, Müller et al 2010, 2012
- Pseudonewtonian potential
 - e.g. Marek et al 2006

approximate but incorporates the main effect of a more compact PNS

Ultra-high density equation of state

A supernova equation of state needs to cover a wide parameter space:

- High to ultra-high densities: $\approx 10^7 10^{15} \ g cm^{-3}$
- High temperatures: $kT \approx 10^5 10^7 MeV$
- Electron fraction: $Y_e \approx 0.05 0.5$
- Account for nuclei (sometimes in the single nucleus approximation)

Common tabulated equations of state:

- Lattimer & Swesty 1992: compressible liquid drop model
 - e.g. LS220 with incompressibility K = 220 MeV
- Steiner et al 2013 : relativistic mean field model
 - e.g. SFHo
- & many others...

Neutrino interactions

TU Darmstadt

Neutrino Reactions in Supernovae	
Beta processes:	• $e^- + p \rightleftharpoons n + v_e$ • $e^+ + n \rightleftharpoons p + \bar{v}_e$ • $e^- + A \rightleftharpoons v_e + A^*$
Neutrino scattering:	• $v + n, p \rightleftharpoons v + n, p$ • $v + A \rightleftharpoons v + A$ • $v + e^{\pm} \rightleftharpoons v + e^{\pm}$
Thermal pair processes:	• $N + N \rightleftharpoons N + N + \nu + \overline{\nu}$ • $e^+ + e^- \rightleftharpoons \nu + \overline{\nu}$
Neutrino-neutrino reactions:	• $v_x + v_e, \bar{v}_e \rightleftharpoons v_x + v_e, \bar{v}_e$ $(v_x = v_\mu, \bar{v}_\mu, v_\tau, \text{ or } \bar{v}_\tau)$ • $v_e + \bar{v}_e \rightleftharpoons v_{\mu,\tau} + \bar{v}_{\mu,\tau}$

Dominant heating and cooling reactions

Heating by neutrino absorption in the gain region:

 $n + \nu_{\rm e} \rightarrow p + e^{-}$ $p + \bar{\nu}_{\rm e} \rightarrow n + e^{+}$

Cooling by electron capture above the neutrinosphere:

 $p + e \rightarrow n + \nu_e$

Cooling by thermal processes: neutrinos leaking out the PNS at the neutrinosphere

Neutrino transport schemes

3 species approximation : - electron neutrino

- electron antineutrino
- 1 species for the 4 heavy lepton neutrinos (muon and tau)

Different approximations :

- Leakage scheme
 IDSA : isotropic diffusion source approximation
 Flux-limited diffusion
 Ray-by-ray approximation (e.g. Garching group)
 Moment method (M1)
- Full Boltzman transport

accurate but too expensive for 3D simulations

Structure of the accretion flow before explosion

The composition of the infalling gas changes:

-across the shock, heavy nuclei are dissociated into nucleons

 ${}^{56}\text{Fe} + 56 \times 8.8 \text{MeV} \rightarrow 26p + 30n + 26e$

-in the gain region, neutrons and protons intercept some neutrinos

 $n + \nu_{\rm e} \rightarrow p^+ + e^$ $p^+ + \bar{\nu}_{\rm e} \rightarrow n + e^+$

-below the gain radius, protons & electrons turn into to neutrons & neutrinos near the proto-neutron star,

$$p^+ + e^- \to n + \nu_{\rm e}$$

- inside the neutrinosphere, a thermal bath of neutrons, protons, neutrinos and anti-neutrinos

$$e^- + e^+ \leftrightarrow \nu_{\rm e} + \bar{\nu}_{\rm e}$$

Criterion for neutrino-driven explosions

Explosion determined by a competition between

- neutrino heating
- ram pressure due to accretion

Critical neutrino luminosity

Proposed explosion criterion:

heating time < advection time

No explosion in 1D spherical symmetry

Liebendorfer et al 2005

Missing ingredient : hydrodynamic instabilities

Neutrino-driven convection

Protoneutron star convection

Standing Accretion Shock Instability (SASI) 3D: S25-2 280 ms

Hanke+2013

Convection instability criterion

 $N^2 \lesssim 0$ radial displacement faxopressed

Proto-neutron star convection

Roberts+2012

Motions transport heat and leptons

=> faster cooling and deleptonization of the protoneutron star

Neutrino-driven convection: heating vs advection

Unstable entropy gradient driven by neutrino heating

Ref. 2x Advection tends to stabilize convection 300 200 م بر الع 100 New instability criterion: 400 12x 6x $\chi \equiv \int_{\text{gain}}^{\text{shock}} \omega_{\text{buoy}}(z) \, \frac{dz}{v}.$ [w] 200 100 Foglizzo+2006 200 300 200 300 200 100 400 100 400 100 x [km]x [km] x [km] Linear instability for chi > 3Radice+2016

For chi < 3, convection can be non-linearly excited but not self-sustained Kazeroni+2018

4x

20x

300

400

1.5

1.0

0.5

0.0

-1.0

-1.5

The Standing Accretion Shock Instability (SASI)

Large-scale shock oscillations : spherical harmonics I=1-2

SWASI : Shallow Water Analogue of a Shock Instability

Explosions are easier in multi-dimensions

Neutrino-driven explosions are aided by hydrodynamic instabilities: Critical neutrino luminosity is lower than in 1D simulations

How SASI and convection help explosion:

- Turbulent pressure pushes the shock
- Increase of the heating efficiency: more time spent in the gain region

Successful explosions in 3D simulations (finally)

One of the first 3D explosions obtained by the Garching group

Obtaining robust explosions was a long standing difficulty Now many groups commonly obtain 3D explosions

Sensitivity to neutrino-matter interactions

 10^{8}

3D without strangeness

2D without strangeness

3D with strangeness

Sensitivity to neutrino-matter interactions

Strange quark correction to the nucleon spin

-> reduces neutral current scattering of neutrinos by 10-20%

6 5

Sensitivity to neutrino-matter interactions: muons

Sensitivity to EOS stiffness

Softer EOS make explosions easier

Couch 2013, Suwa et al 2013, Pan et al 2018

Phase transition to quark-gluon plasma?

Strong explosion of high mass progenitor triggered by phase transition

Second peak of neutrino emission

Fischer et al 2017

Comparing to observations: explosion energy

Observed range of explosion energies : $\approx 10^{50}$ to a few $10^{51} \, erg$

Median value : $\approx 5 \times 10^{50} erg$

Explosion asymmetries account for observations

Grefenstette et al 2014

Wongwathanarat et al 2016, 2018

Other observational evidence of asymmetry: Neutron star kicks: several 100 km/s => accelerated at birth Polarisation of SN light: inner ejecta are asymmetric

Neutrino signatures

Gravitational wave signature

Toward protoneutron star asteroseismology

Detection and identification of several oscillation modes \Rightarrow probe of protoneutron star structure

Torres-Forné+2018

Conclusion on standard supernovae

The neutrino-driven mechanism is the favored scenario to explain standard CCSN:

- Sound theoretical support: first principles & predictive
- Successful 3D explosions of many progenitors
- Reproduces the right order of magnitudes: explosion energy, nucleosynthesis, asymmetries, NS kicks

But many open questions/uncertainties to be solved for a more quantitative comparison to observations:

- Equation of state, neutrino interactions/transport, resolution dependence..
- Progenitor dependence

Direct probe of the dynamics with multimessenger observations: waiting for the next Galactic SN ©

Outstanding explosions: magnetorotational explosions?

Explosion kinetic energy :

- \rightarrow Typical supernova 10⁵¹ erg
- → Rare hypernova & GRB 10^{52} erg aka type Ic BL

Total luminosity :

- \rightarrow Typical supernova 10⁴⁹ erg
- \rightarrow Superluminous supernovae 10⁵¹ erg

Light curves can be fitted by millisecond magnetar

- strong dipole magnetic field: B ~ 10^{14} - 10^{15} G
- fast rotation: P ~ 1-10 ms

e.g. Kasen+10, Dessart+12, Nicholl+13, Inserra+13

 \rightarrow Neutrino driven explosions

\rightarrow Magnetorotational explosion ?

e.g. Burrows+07, Takiwaki+09,11 Bucciantini+09, Metzger+11, Obergaulinger+17

Magnetars: the most intense known magnetic fields

Magnetic field origin : different scenarios

Compression of stellar magnetic field :

Amplification by a few $\sim 10^4$ during core collapse Very magnetised stars on surface (B >1 kG) : also need a 10^{10} - 10^{11} G in the iron core

Protoneutron star dynamos

Magnetorotational instability

Similar to accretion disks

Convective dynamo

Similar to planetary & stellar dynamos

Simulating different spatial scales

The magnetorotational instability (MRI)

In ideal MHD (i.e. no resistivity or viscosity) :

Condition for MRI growth $\ \ \displaystyle rac{\mathrm{d}\Omega}{\mathrm{d}r} < 0$

Growth rate :
$$\sigma=rac{q}{2}\Omega$$

with $\Omega \propto r^{-q}$

 \rightarrow Fast growth for fast rotation

Wavelength :
$$\lambda \propto {B \over \sqrt{
ho \Omega}}$$

 \rightarrow Short wavelength for weak magnetic field

Magnetorotational instability in spherical geometry

PhD thesis of Alexis Reboul-Salze

Convective dynamo in a protoneutron star

Convective dynamo in a protoneutron star

Magnetic field strength

Intermediate rotation: 2.5 ms < P < 10-20 ms delayed strong dynamo => normal magnetar with superluminous SNe & normal SNe ?

Magnetorotational explosions

Strong magnetic field: $B \sim 10^{15} G$

+ fast rotation (period of few milliseconds)

=> powerful jet-driven explosions

e.g. Sibata+06, Burrows+07, Dessart+08, Takiwaki+09,11, Winteler+12, Obergaulinger+17

But in 3D, jets may be unstable to kink instability Moesta+2014

Caveat: strong dependence on the initial magnetic field

Magnetorotational explosions: dependence on magnetic field structure

Higher multipoles also launch explosions but:

- Less collimated
- Less energetic

Magnetorotational explosions: 3D simulations

R-process in magnetorotational explosions ?

Efficient r-process may be possible in magnetorotational supernovae but need better description of neutrinos & magnetic field

Winteler+2012, Nishimura+2016, Moesta+2017, Halevi+2018

Conclusions on extreme explosions

Magnetorotational explosions from millisecond magnetar formation are a viable scenario for extreme explosions:

- Sufficient energy reservoir for fast rotation
- Dynamo models predict strong magnetic fields
- May be a source of r-process elements

But we are still far from a complete self-consistent picture:

- Dynamo models are sensitive to small scales
- Explosion simulations do not include the magnetic field amplification
- Longer simulations are needed to make a direct link to observations

