i process and the neutron-capture rate of ¹²⁶Sb

Francesco Pogliano, March 15th 2022 17th Russbach school

The various nucleosynthesis processes

CEMP stars

The various nucleosynthesis processes

Hampel *et al.* (2016) 6

Average Properties of the nucleus

¹²⁷Sb

¹²⁷Sb

NLD

GSF

Conclusion

¹³⁵I region interesting for the i-process

Possible to extract interesting properties for astrophysics with indirect approach (Oslo method)

First work with NLD and GSF for ¹²⁷Sb, and MACS for ¹²⁶Sb

Constrained uncertainty of MACS, good agreement with theory (but not ENDF)

Conclusion

¹³⁵I region interesting for the i-process

Possible to extract interesting properties for astrophysics with indirect approach (Oslo method)

First work with NLD and GSF for ¹²⁷Sb, and MACS for ¹²⁶Sb

Constrained uncertainty of MACS, good agreement with theory (but not ENDF)

Outlook

Get data for more nuclei in the region (we are working on getting a ¹²⁸Te target)

Extrapolate NLD and GSF data for those we can't reach

Run model-consistent i-process simulation with more precise data and get more precise info about possible bottleneck

Thank you!

Backup

