17th Russbach School on Nuclear Astrophysics

Cross section measurement of the ^{92,94}Mo(a,n) and ⁹²Mo(a,p) reactions by γ-spectroscopy

Tibor Norbert Szegedi

2022 UNIVERSITY of DEBRECEN

Ν

		°"Cd	° ^{si} Cd ₈₊	°€Cd ₽+	°7Cd	°ªCd ₽+	°°Cd ®*	10ºCd B+	¹⁰¹ Cd _{B+}	102Cd	¹⁰³ Cd ⁸⁺	¹º℃d ₽+	¹º⁵Cd ₽+	106Cd 28+	¹⁰⁷ Cd 8+	¹⁰⁸ Cd 28+	¹⁰⁹ Cd e-cepture	110Cd Stable	11°Cd Stable	112Cd Stable	[™] Cd ₽	111°C 20
	°²Ag _{₿+}	°³Ag	°*Ag	⁰⁵Ag ₽+	⁰éAg 8+	⁹⁷ Ag β+	SSAC) ~ [î		<u>l</u> e	1º2Ag	¹⁰³ Ag 8+	104Ag 8+	105Ag	¹⁰⁶ Ад в+	¹⁰⁷ Ag	¹⁰⁸ Ag	109Ag Stable	¹¹⁰ Ag ₽	¹¹¹ Ag ₽	¹¹² Ag ₽	¹¹³ Д ө-
⁰Pd ₽+	⁹¹ Pd	°²Pd ®+	°³Pd ®+	°"Pd	⁹⁸ Pd 8+	⁹⁶ Pd ₅+	°7Pd	⁰ªPd ₅+	⁹⁹ Pd s+	¹⁰⁰ Pd e-capture	¹⁰¹ Pd 8+	¹⁰² Pd 28+	¹⁰³ Pd e-capture	¹⁰ *Pd Stable	105Pd Stable	¹⁰⁶ Pd stabie	107Pd	¹⁰⁸ Pd Stable	¹º⁰₽d ₽	110Pd 28-	[™] Pd ₽	112P 8-
°Rh ₽Ŧ	°°Rh ®†	⁹¹ Rh ₽+	°2Rh 8+	°³Rh ®+	°"Rh ₽+	°⁵Rh ₅+	° ^s Rh ₽+	⁹⁷ Rh	^{sa} Rh ₅+	"Rh	100Rh 8+	¹⁰¹ Rh e- capture	¹º²Rh ⊮	105Rh Stable	¹⁰"Rh ₽	¹º⁵Rh ₽	¹º⁵Rh ₽-	107Rh	¹ºªRh ₽	¹⁰⁰Rh ₽	¹¹⁰ Rh ₽	111 8-
®Ru ₽+	^{ss} Ru ₅+	[∞] Ru ₅+	⁰'Ru ₽+	92Ru 8+	⁹³ Ru 8+	°4Ru ₽+	PIRU B+	96RU 28+	97RU 8+	⁶⁸ RU Stable	²⁰ Ru Stable	¹⁰⁰ RU Stable	¹⁰¹ RU Stable	¹⁰² Ru Stable	103Ru 8-	¹⁰⁴ Ru 29-	¹ºªRu ⊮	¹ºªRu ₽	¹ºĩRu ₽	¹⁰⁸ Ru ₽	¹º⁰Ru ₽	119 8-
"Tc ₽+	B+	^{во} Тс _{в+}	⁹⁰ Тс 8+	91TC 8+	⁹² Тс ₈₊	°²Tc Bt	⁹⁴ Тс _{вт}	°ªTC Bt	⁹⁸ Тс _{в+}	°7TC er capture	°°TC °°	°°Tc ₽	¹⁰⁰ Тс в	¹⁰¹ Тс в	¹⁰² TC P	¹⁰⁹ ТС в-	¹⁰⁴ Тс в-	¹⁰⁹ ТС в-	¹⁰⁸ TC ₽	¹⁰⁷ Тс э	°°TC ₽	109 8-
Mo ₽+	⁸⁷ Мо ₈₁	88 84 84	89M0 8+	°°Mo ®+	91MC 8+	92MO 28+	⁹³ M¢ + captu	94MO Stable	⁹⁵ MO Stable	⁹⁶ MO Stable	97MO Stable	⁹⁸ MO 20 ⁵	°Mo ®	¹⁰⁰ MO 28⁺	¹⁰¹ MO ₽	¹⁰² Мо в-	¹⁰³ MO 8-	¹⁰⁴ Мо в-	¹⁰⁹ MO ₽	¹⁰⁶ Мо в-	¹⁰⁷ Мо в	108 8-
Nb ₽+	⁸⁶ Nb ₽+	^{₽7} Nb ^{β+}	⁸⁸ Nb 8+	⁸⁹ Nb 8+	^{so} Nb ^{s+}	er capture	⁹² Nb ₿+	²² ND Stable	°Nb °	⁰ªNb ₽	°ªNb ₽	°'Nb °	°ªNb ₽	°⁰Nb ₽	109Nb	¹⁰³ Nb ₽	102Nb 8-	103Nb 8-	⁰"Nb ₽	¹⁰⁹ Nb	¹º⁰Nb ₽	107 0-
[₽] Zr	⁸⁹ Zr	⁸⁶ Zr ₽+	⁸⁷ Zr ₿+	⁸⁸ Zr e- capture	[®] Zr ₽+	⁹⁰ Zr Stable	⁹¹ Zr Stable	92Zr Stable	٥ºZr	94Zr 28-	°ªZr º-	°€Zr ₂⊳	°Zr ®	۶ºZr	°°Zr	100Zr 8-	¹⁰¹ Zr 8-	102Zr	¹ººZr ₽	™Zr ₽	¹oªZr ₽	10eZ 8-
ε9γ 87	84¥ 8+	89Y 8+	^{ве} ү ^{в+}	εγ 8+	88¥ 8+	89 Y Stable	90¥ 9	۹۲ ه	°2Y p	90 р-	°4Y 0-	vəY p-	96Ү 0-	۳Y	98Y 9	°°ү в-	100 Y 8-	101¥ 8-	102¥ 8-	103¥ 8-	10 °Y 8*	108 8-
¹² Sr capture	⁸³ Sr 87	84Sr 28+	85Sr e-capture	857 3804	SING ST	⁸³ Sr Stable	⁸⁹ Sr	°Sr P	°'Sr ®	°2Sr P	°3Sr °-	°"Sr ®	°⁵Sr ₽	⁰*Sr ₽	⁰"Sr ₽	°⁰Sr ₽	°°Sr ®	100Sr 81	¹⁰¹ Sr e	102Sr 8-	103Sr P	104 <u>0</u> 8-
°Rb ₽+	^{≈2} Rb ₽+	⁸³ Rb e- capture	⁸⁴ Rb ₽+	⁸⁹ Rb 5864	≌Rb ₽	®Rb ₽	≌Rb ₽	*Rb	[≈] Rb ₽	°¹Rb ₽	≌Rb ₽	°ªRb	°"Rb	₽₽Rb	°*Rb P	°'Rb	[∞] Rb ₽	°°Rb ₽	100Rb	¹⁰¹ Rb ₽	102Rb	103 <mark>R</mark> 8-
°Kr	⁸¹ Kr e-capture	⁸² Kr 514544	⁸³ Kr 5466	⁸⁴ Kr 5404	^{ss} Kr ₽	⁸⁶ Kr 28-	®Kr ₽	≊Kr ₽	^{so} Kr	°°Kr °	°'Kr °	°²Kr ₽	°°Kr ¢	°"Kr	° ^s Kr °	°⁴Kr ₽	°″Kr ₽	°⁰Kr ₽	°°Kr ₽	109Kr P	¹⁰¹ Kr	

The p-nuclei mainly synthetized via photodisintegration. However, the rp- and ν p-process can give a contribution to their abundance.

 γ -process

Reaction network calculations

>10 000 reaction on ~ 1 000 (mostly radioactive) nuclei

Motivation

 92,94 Mo are the most abundant p-isotopes \rightarrow experimental knowledge on 92,94 Mo involved reactions is important

Thick target yield measurement

Radioactive product \rightarrow Activation technique \rightarrow Irradiation and counting separately

$$N_{det}(E) = \sigma(E) \cdot \Phi \cdot N_{targ} \cdot \epsilon \cdot I \cdot \frac{\left(1 - e^{-\lambda \cdot t_i}\right)}{\lambda} \cdot e^{-\lambda \cdot t_w} \cdot \left(1 - e^{-\lambda \cdot t_c}\right)$$

- 0.5 mm thick, natural isotopic composition molybdenum targets.
- The α -beam stops in the target material.
- Reactions takes place with all energies between the initial and threshold energy.
- The cross section can be determined by subtraction:

$$\sigma(E_{eff}) = \frac{[Y_{TT}(E_2) - Y_{TT}(E_1)] \cdot \overline{\epsilon_{eff}}(E_1; E_2)}{E_2 - E_1}$$

Reaction properties								
Target	92	Мо	⁹⁴ Mo	¹⁰⁰ Mo				
bundance	14.5:	±0.3%	9.2±0.9%	9.8±0.3%				
Reaction	⁹² Mo(α,n)	⁹² Mo(α,p)	⁹⁴ Mo(α,η)	¹⁰⁰ Mo(α, Α [Sze21]				
Product	⁹⁵ Ru	⁹⁵ Tc	⁹⁷ R	103 RL				
T _{1/2}	1.6033±0.0044 h [Sze20]	19.258±0.026 h [Sze20]	2.84+201 d	39.242-9.013d				
Gammas		E _v [keV] (I _v	%])	S				
	336.4 (69.9±0.5)	765.8 (93.8±0.3)	2157 (85.6±1.3)	497.1(91.0±1.2)				
	626.8 (17.8±0.5)	947.7 (1.95±0.02)	324.5 (10.79±0.17)	610.3(5.76±0.06)				
	1096.8 (20.9±1)	1073.7 (3.74±0.4)						

[Sze20] T.N. Szegedi et al., Eur. Phys. J. A 56, [Sze21] T.N. Szegedi et al., Phys. Rev. C, 104, 182 (2020).

Irradiation

- α -beam was provided by the cyclotron accelerator of Atomki between 9.5 13 MeV energy range
- Length of irradiation varied between 30 min and 12.5 hours
- Current measurement
 - Faraday-cup \rightarrow Determination of the number of incident $\alpha\text{-particles}$
 - Multichannel analyzer
 - Secondary electron suppression voltage U = 300 V
 - Water cooling
 - Typical beam current: 0.3 2 μA

γ-counting setup

- Cross section measurement is based on measuring the yield of γ -radiation following the β -decay of the radioactive isotopes \rightarrow HPGe detectors
- Absolute detection efficiency was measured by calibration γ sources (60Co, $^{133}Ba,\,^{137}Cs,\,^{152}Eu)$

Parameters	Detector						
	DET1	DET2					
Relative efficiency*	50 %	100 %					
Shielding	Pb (50 mm)	Cu-Cd-Pb (1-1-100 mm)					
Far counting geometry	21 cm	27 cm					
Close counting geometry	$5~{ m cm}$	1 cm					

* Absolute efficiency of a 3" diameter, 3" high cylindrical NaI detector.

Data analysis

2. Peak area

3. Thick target yield $(Y_{TT}(E))$

4. Cross section

Preliminary results 10³ ⁹²Mo(α,n)⁹⁵Ru 10^{2} Cross Section [mbarn] 10 Rapp et al. [Rap08] McFadden Esterlund et al. [Est65] Demetriou I 10⁰ Graf et al. [Gra74] Demetriou III Denzler et al. [Den95] Avrigeanu Levkovski et al. [Lev91] Atomki-V1 Present work Non Smoker 10⁻¹ 9.5 10.0 10.5 9.0 12.0 12.5 11.0 11.5 13.0

E_{eff.} [MeV]

92 Mo(α ,p) 95 Tc method

- ${}^{92}Mo(\alpha,n)$ and ${}^{92}Mo(\alpha,p)$ channels are open
- $\sigma(\alpha,n) \approx 10 \cdot \sigma(\alpha,p)$, but different half-lives
- By applying the Bateman equation the counts corresponding to the (a,n) channel can be subtracted from the measured yield

Data Analysis Is In Progress!

Nemzeti Kutatási, Fejlesztési És Innovációs Hivatal

Thank you for your attention!

Nuclear Astrophysics group of Atomki: G.G. Kiss, Gy. Gyürky, T. Szücs, Z. Halász, Z. Elekes, Á. Tóth

Supported by the ÚNKP-21-4-I-DE-243 New National Excellence Program of the Ministry for Innovation and Technology from the source of National Research, Development and Innovation fund.