24–26 Mar 2025 In-Person Event
Helmholtz-Zentrum Berlin für Materialien und Energie
Europe/Berlin timezone

Reflectorch: A machine learning application for reflectometry data analysis

Not scheduled
20m
Helmholtz-Zentrum Berlin für Materialien und Energie

Helmholtz-Zentrum Berlin für Materialien und Energie

Campus Adlershof Albert-Einstein-Straße 15 12489 Berlin
Poster Poster

Speaker

Alexander Hinderhofer

Description

We present a machine learning approach for automatized analysis of X-ray (XRR) and neutron reflectivity (NR) data that. The method utilizes prior knowledge to regularize the training process over larger parameter spaces. [1-2] We demonstrate the effectiveness of our method in various scenarios, including multilayer structures with box model parametrization and a physics-inspired special parametrization of the scattering length density profile for a multilayer structure. In contrast to previous methods, our approach scales favorably when increasing the complexity of the inverse problem, working properly even for a several layer multilayer model and an N-layer periodic multilayer model with up to 20 open parameters. We will also discuss autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments. [3]

[1] V. Munteanu, V. Starostin, A. Greco, L. Pithan, A. Gerlach, A. Hinderhofer, S. Kowarik, F. Schreiber, Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge
J. Appl. Cryst. 57 (2024) 456

[2] V. Starostin, M. Dax, A. Gerlach, A. Hinderhofer, Á. Tejero-Cantero, F. Schreiber, Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation
Sci. Adv. (2025), in print

[3] L. Pithan, V. Starostin, D. Marecek, L. Petersdorf, C. Völter, V. Munteanu, M. Jankowski, O. Konovalov, A. Gerlach, A. Hinderhofer, B. Murphy, S. Kowarik, F. Schreiber, Closing the loop: Autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
J. Synchrotron Rad. 30 (2023) 1064

Primary authors

Alexander Hinderhofer Valentin Munteanu (Universität Tübingen) Dmitry Lapkin (Universität Tübingen) Frank Schreiber (Universität Tübingen)

Presentation materials

There are no materials yet.