24–26 Mar 2025 In-Person Event
Helmholtz-Zentrum Berlin für Materialien und Energie
Europe/Berlin timezone

mlgid: Machine learning assisted high-throughput workflow for GIWAXS data analysis

Not scheduled
20m
Helmholtz-Zentrum Berlin für Materialien und Energie

Helmholtz-Zentrum Berlin für Materialien und Energie

Campus Adlershof Albert-Einstein-Straße 15 12489 Berlin
Poster Poster

Speaker

Alexander Hinderhofer

Description

Due to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This so-called phase problem poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this, we present an approach that utilizes prior knowledge to regularize the training process over larger parameter spaces. [1-3] We demonstrate the effectiveness of our method in various scenarios, including multilayer structures with box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. By leveraging the input of prior knowledge, we can improve the training dynamics and address the underdetermined ("ill-posed") nature of the problem.

[1] V. Munteanu, V. Starostin, A. Greco, L. Pithan, A. Gerlach, A. Hinderhofer, S. Kowarik, and F. Schreiber.
Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge
J. Appl. Cryst. 57 (2024) 456

[2] V. Starostin, M. Dax, A. Gerlach, A. Hinderhofer, Á. Tejero-Cantero, and F. Schreiber.
Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation
Sci. Adv. (2025), in print

[3] L. Pithan, V. Starostin, D. Marecek, L. Petersdorf, C. Völter, V. Munteanu, M. Jankowski, O. Konovalov, A. Gerlach, A. Hinderhofer, B. Murphy, S. Kowarik, and F. Schreiber.
Closing the loop: Autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
J. Synchrotron Rad. 30 (2023) 1064

Primary authors

Alexander Hinderhofer Valentin Munteanu (Universität Tübingen) Dmitry Lapkin (Universität Tübingen) Frank Schreiber (Universität Tübingen)

Presentation materials

There are no materials yet.