

13th IFAST WP9 meeting

Bundesministerium für Bildung und Forschung

Dr. Aleksandr Zubtsovskii, Bharath Reddy Lakki Reddy Venkata, Prof. Dr. Xin Jiang

LOT, Institut für Werkstofftechnik, Universität Siegen

02.12.2024, Berlin

Tasks at Uni Siegen

- 1. Deposition studies:
 - **NbTiN** in CC800: DCMS and HiPIMS
 - Nb₃Sn in BoxCoater: RFMS, "test" the material, SIS structures
 - MgB_2 in PVD/SEY chamber: co-sputtering with RFMS on metal (Cu, Nb...) as well as insulating (AlN, TiO₂, Al₂O₃) substrates
- 2. Substrate preparation: mechanical and electropolishing of Cu
- 3. Sample characterization: film morphology, microstructure +

PAS experiments (HZDR Germany, Sebastian Klug, Oskar Liedke) +

SC and RF properties (INFN-LNL Italy, Dorothea, Davide, Giovanni; IEE Slovakia, Eugen)

Experimental setup

Commercial coating system CC800/9

- Target size: 100 x 88 mm²
- Target: NbTi alloy 80:20 wt% (99,95%, Robeko)
 ~Nb_{0.67}Ti_{0.33} target composition
- Bake-out time: 6 h at 290°C
- Base pressure: ~6.0 x 10⁻⁷ mbar
- MF plasma etching for substrate plasma cleaning

Substrates

- p-doped Si<100>, 15 x 15 mm²
- Polycrystalline OFHC Cu samples, 1 mm thick, 25 x 25 mm²
- Sample treatment of Cu substrates: mechanical polishing + electropolishing in a solution of $o-H_3PO_4$ (85 %) and n-butanol (C₄H₉OH), 3:2 ratio

Characterization methods:

- SEM, EDX, XRD, AFM
- T_c (coil-induction) measurement station^[1] on Si samples

[1] D. Fonnesu et al., *in Proc. SRF'21*, East Lansing, MI, USA, Jun.-Jul. 2021, pp. 105-108 <u>doi.org/10.18429/JACoW-SRF2021-SUPFDV018</u>

02.12.2024

A. Zubtsovskii

0.5 Pa

0.7 Pa

Effect of deposition pressure

 $P_{\text{target}} = 400 \text{ W}, \text{ N}_2 = 9\%, \text{Bias} = -50 \text{ V}$

Effect of N₂ concentration and cathode power

High T_c - where?

- Low deposition pressure: 0.5-0.7 Pa
- High cathode power: 600W (6.8 W/cm²)
- Low N₂ flow: <9%, related to the cathode power
- Deposition temperature: old "250°C" → real >500°C
- Target composition: use NbTi alloy 70:30 wt% instead of 80:20 wt

PAS experiments: deposition pressure

Results: SEM Micrographs (HiPIMS-NbTiN)

Deposition pressure study

Lehrstuhl für

Oberflächen- und Werkstofftechnologie

Duty cycle study

Substrate bias study

UNIVERSITÄT SIEGEN

Nb₃Sn RF sputtering

Nb₃Sn in BoxCoater

Test depositions for multilayer systems Later process transfer to CC800 - HiPIMS

Parameters: $T_{\rm dep} = 600^{\circ} \rm C$ P(cathode) = 100 W p_{dep} = 1 Pa (Ar) \rightarrow must be Kr

02.12.2024

File Name = RF-Nb3Sn 03-02

Mag = 25.00 K X

WD = 4 mm

ZARKY

co-MgB₂: RF sputtering

MgB₂ in PVD/SEY chamber

- Four 2" RF magnetrons (confocal)
- Targets Mg and B: variation of cathode powers
- Substrate temperature: set to 300°C
- Ar pressure: 0.5 1 Pa

4 cathodes arrangement

Plans and outlook

- Optimization of **DC-NbTiN** deposition: change the target composition to **Nb:Ti = 70:30 wt%!**
- Results of T_c for HiPIMS-NbTiN: limited by the target composition as well?
- SIMS for the influence of N_2 flow concentration: DC- and HiPIMS-NbTiN
- Deposition of multilayer (SS or SIS) structures with
 DC-NbTiN ("best" conditions) / DC-AlN/ HiPIMS-Nb or bulk Nb
- Start of MgB₂ deposition in PVD/SEY deposition chamber by RF co-sputtering: promising?
- Deposition of Nb₃Sn in BoxCoater: test for the multilayer structures
- QPR samples for RF test and surface resistance

THANK YOU FOR YOUR ATTENTION!

