
Learning Earth system model
dynamics with implicit schemes

Model-driven
Machine Learning

Marcel Nonnenmacher

Model-driven Machine Learning
Institute for Coastal Research
Helmholtz-Centre Hereon

Total values / time point: 2.6 billion

Images: Stevens et al., 2019, Reinert et al., 2021

Earth Science models and their applications
ICON model for numerical weather
prediction (DWD, MPI-M)

2949120
grid cells

90
z-levels

10+
variables / location

Or with a time step of 120 seconds,
Total values / day: 1.9 trillion

Data assimilation application for
weather forecasts (ECMWF)

Image source: ecmwf.int
“20 years of 4D-Var: better forecasts through a better
use of observations“

Physics-based Simulation in Earth Science

x0 x1 x2

System state
• Physical variables (pressure, temperature, …)
• Snapshot for one time point

State update function
• Physical processes (radiation, turbulence, phase changes, …)
• Mass transfer due to gravity, wind, precipitation, …

Derivatives of state update function
• Data assimilation, model tuning, ...

Simulation for Earth Science models is expensive.

Emulation: ML model imitates the state update function of a numerical simulator.

Possible advantages of ML models:

- parallelization on GPU clusters

- may find “shortcuts” from large datasets

- trained in “auto-diff” environments
(no need to write and maintain derivative routines)

Emulation of numerical simulators

Mistral, DKRZ (>105 processors, 3.6 PetaFLOPS)

Simulation code: FORTRAN, often > 105 lines

Emulator examples

Emulator examples

Emulator examples

The core principles (L96)

Model System: Lorenz `96

Time

Lorenz, 1996

● 40 coupled nonlinear differential equations

● Chaotic dynamics (Lyapunov time 1.67 for F = 8)

Model System: Lorenz `96

Time

Lorenz, 1996

● 40 coupled nonlinear differential equations

● Chaotic dynamics (Lyapunov time 1.67 for F = 8)

local computations !

Basic emulator training

state at time t state at time t+1

ML

local function!

Structured ML models for learning the update step

k
1

k
2

k
3

k
4

Xt+dt

X t

dt/6

2

dt/2 dtdX
dt

dt/2dX
dt

dX
dt

dX
dt

RK4:

If f is differentiable (wrt. xt), so is xt+1 !

Take structure of numerical solver into account !

Network architectures

xt

xt+1

xt

(circular) convs & ReLUs
 convolution = local function

quadratic nonlinearity

bilinear layer

xt xt xt

Training on partial system states

Trained emulators reproduce system states and derivatives

Data assimilation, parametrization tuning etc.

Emulators for 4D-Var data assimilation

da
ta

si
m

ul
at

io
n

1) with differentiable dynamical
model, estimate initial state x0
from noisy & incomplete data.

2) starting from x0,, simulate future
states beyond final data point.

(optional) evaluate prediction error

x0

numerical model

emulator

2D systems and beyond explicit solvers

Shallow Water Equations

Shallow
water

equations

Emulator
(convnet)

Difference

Structure of SWE numerical solver

State update function of the numerical solver:

 (semi-)implicit !

 (other fluid equations: similar for h = pressure)

More specifically here:

Implicit schemes = non-local state update functions

 and may generally be local functions (in),

but generally is not!

kernel = [-0.5, 1, -0.5]

Implicit schemes = non-local state update functions

Build solver structure into ML model?

t

t+1

 and may generally be local functions (in),

but generally is not!

We could try:

- non-local feed-forward networks
 (lots of network parameters)

- U-Nets
 (scaling with e.g. doubled resolution?)

Linear implicit network layers

(linear) solve operations as part of a neural network model: for training need backpropagation!

1) forward pass: , where

2) backward pass:

Implicit function theorem (IFT) gives:

 depend on how we parametrize

http://implicit-layers-tutorial.org/

Any standard-library linear solver would do.

For large system sizes (>>103 grid points), use linear solvers that scale
accordingly.

One possible choice: implement multi-color Gauss-Seidel in pytorch
- valid for an important class of banded matrices A.

- iterative method, initialize with estimate of solution

- divide grid points into colors (e.g. red vs black)

- iterations only require dot products -> GPU !

Linear solvers

Linear implicit layer
in simple pytorch

[this is essentially a re-write of torch.linalg.solve()
 in pure pytorch (no c++) and for custom solvers]

solve #1

solve #2

b, A = f(x) and (db/dx, dA/dx)

Results on SWE
Solver step length: dt = 300s dt = 600s

Composability: implicit output in neural architectures

Residual block: conv & relu Residual block: stack(conv, implicit) & relu

Outlook

- (linear) implicit layers as flexible building blocks of neural networks

- scaling to large systems (Gauss-Seidel only a start: multigrid methods)

- expressivity of linear implicit layer & parametrization of A(x)

