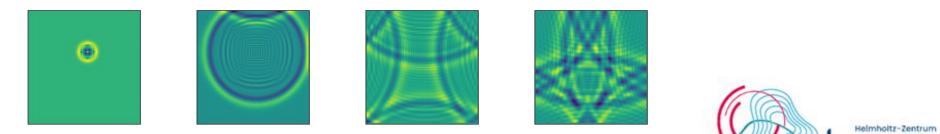
Learning Earth system model dynamics with implicit schemes



Marcel Nonnenmacher

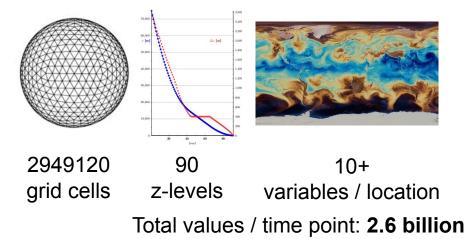
Model-driven Machine Learning Institute for Coastal Research Helmholtz-Centre Hereon

Model-driven Machine Learning

HELMHOLTZAI ARTIFICIAL INTELLIGENCE

Earth Science models and their applications

ICON model for numerical weather prediction (DWD, MPI-M)



Or with a time step of 120 seconds, Total values / day: **1.9 trillion**

Images: Stevens et al., 2019, Reinert et al., 2021

Data assimilation application for weather forecasts (ECMWF)

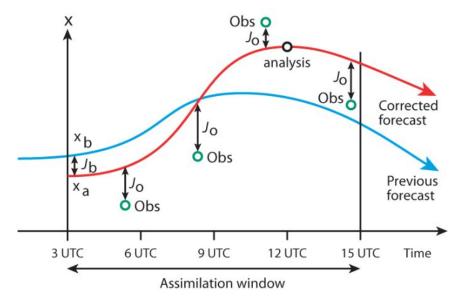
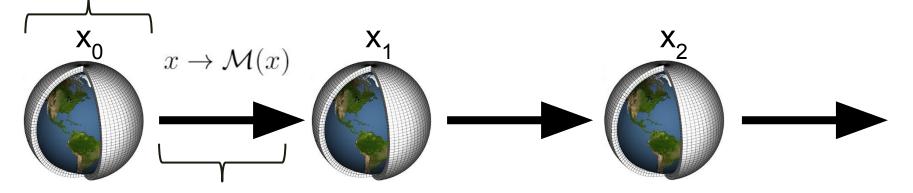


Image source: ecmwf.int "20 years of 4D-Var: better forecasts through a better use of observations"

Physics-based Simulation in Earth Science

System state

- Physical variables (pressure, temperature, ...)
- Snapshot for one time point



- State update function
- Physical processes (radiation, turbulence, phase changes, ...)
- Mass transfer due to gravity, wind, precipitation, ...

Derivatives of state update function $\frac{dX_1}{dX_0}$

Data assimilation, model tuning, …

Emulation of numerical simulators

Simulation for Earth Science models is **expensive**.

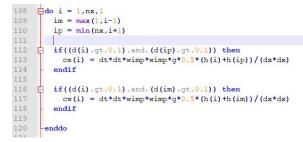
Mistral, DKRZ (>10⁵ processors, 3.6 PetaFLOPS)

Emulation: ML model imitates the state update function of a numerical simulator.

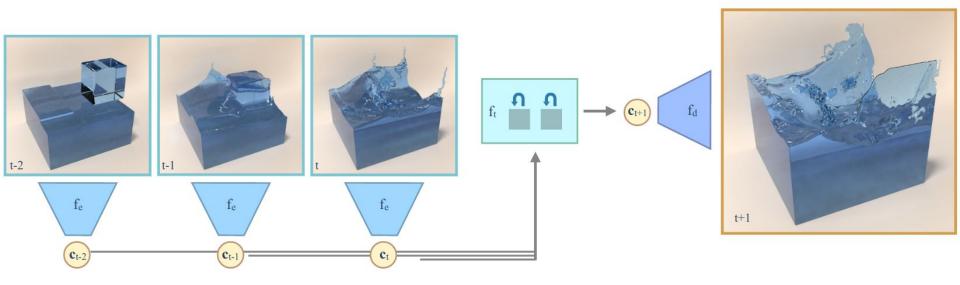
Possible advantages of ML models:

- parallelization on GPU clusters
- may find "shortcuts" from large datasets
- trained in "auto-diff" environments (no need to write and maintain derivative routines)

Simulation code: FORTRAN, often > 10⁵ lines



Emulator examples

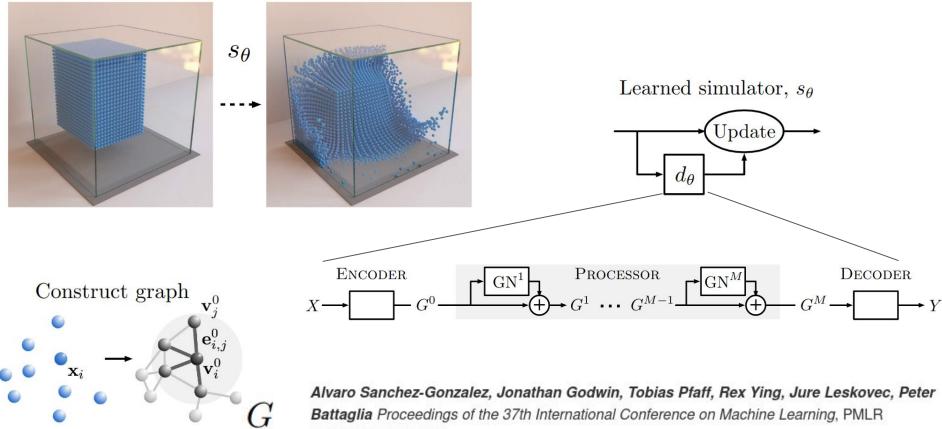


S. Wiewel¹, M. Becher¹, N. Thuerey¹[†]

¹Technical University of Munich

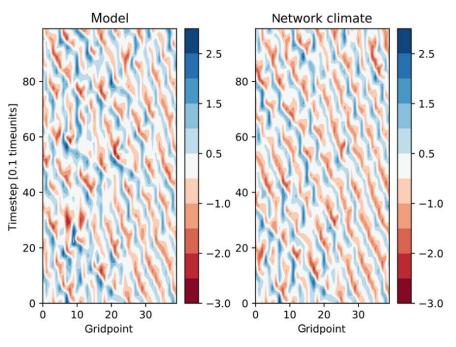
Computer Graphics Forum, Volume 38 (2019) – Issue 2 Presented at Eurographics Conference 2019, May 2019

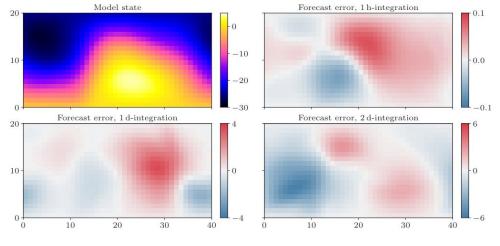
Emulator examples



119:8459-8468, 2020.

Emulator examples





Alban Farchi

Marc Bocquet CEREA joint laboratory École des Ponts ParisTech and EDF R&D Champs-sur-Marne, France

Patrick Laloyaux

Massimo Bonavita ECMWF Shinfield Park Reading, United Kingdom

arXiv:2010.12605v2 [stat.ML] 10 May 2021

Nonlin. Processes Geophys., 26, 381–399, 2019 https://doi.org/10.5194/npg-26-381-2019

Sebastian Scher¹ and Gabriele Messori^{1,2}

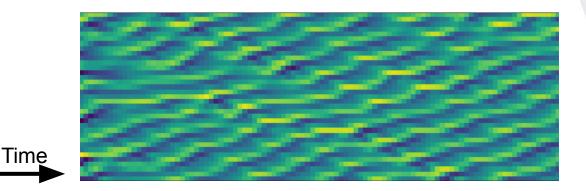
¹Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, ²Department of Earth Sciences, Uppsala University, Uppsala, Sweden

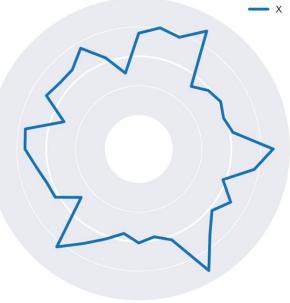
The core principles (L96)

Model System: Lorenz `96

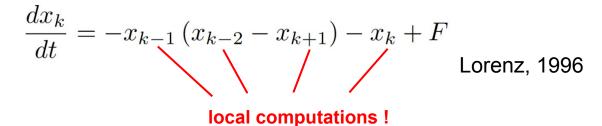
$$\frac{dx_k}{dt} = -x_{k-1} \left(x_{k-2} - x_{k+1} \right) - x_k + F$$
Lorenz, 1996

- 40 coupled nonlinear differential equations
- Chaotic dynamics (Lyapunov time 1.67 for F = 8)

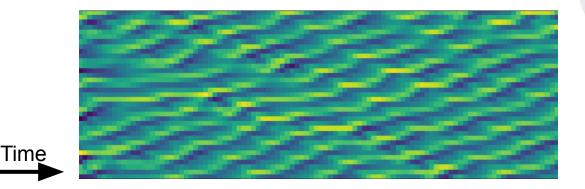


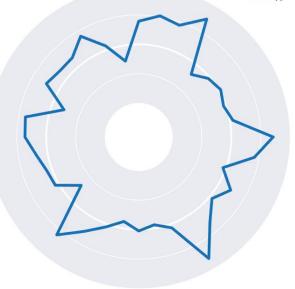


Model System: Lorenz `96

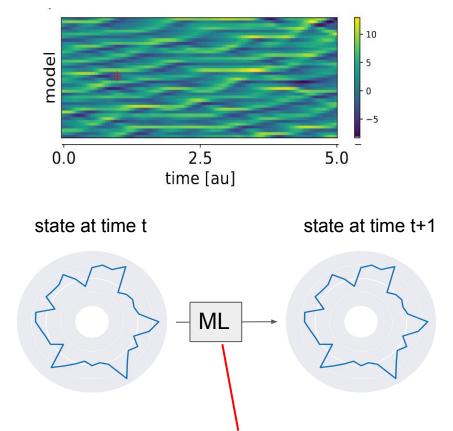


- 40 coupled nonlinear differential equations
- Chaotic dynamics (Lyapunov time 1.67 for F = 8)

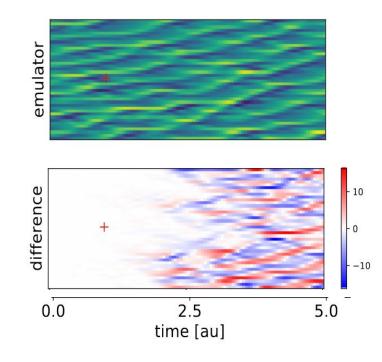




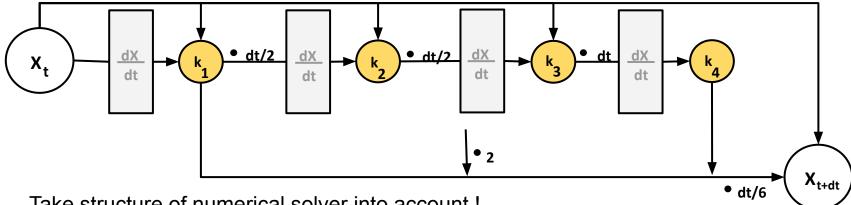
Basic emulator training



local function!



Structured ML models for learning the update step



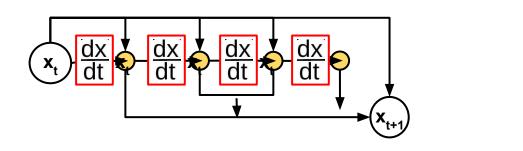
Take structure of numerical solver into account !

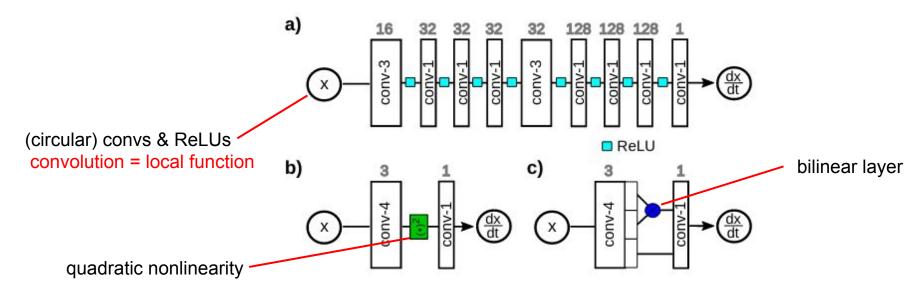
RK4:
$$X_{t+dt} = X_t + \frac{dt}{6}(k_1 + 2(k_2 + k_3) + k4)$$

 $k_1 = f(X_t)$
 $k_2 = f\left(X_t + k_1 \cdot \frac{dt}{2}\right)$
 $k_4 = f\left(X_t + k_3 \cdot dt\right)$

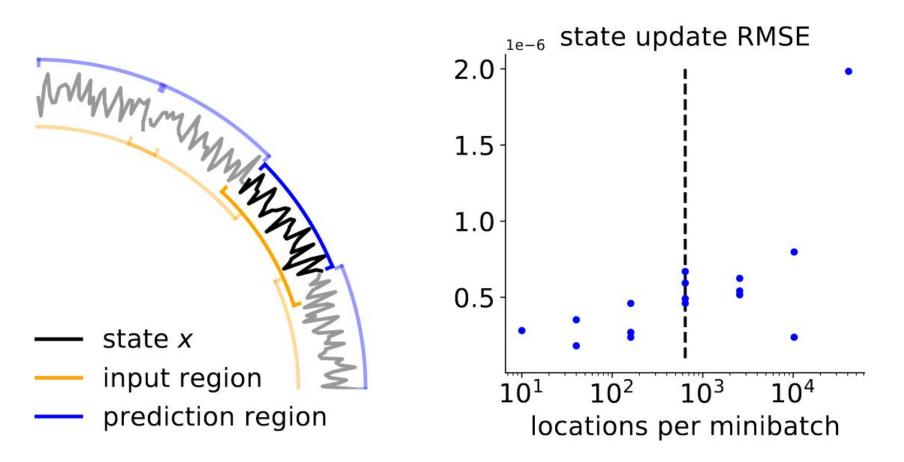
If f is differentiable (wrt. \mathbf{x}_{t}), so is \mathbf{x}_{t+1} !

Network architectures

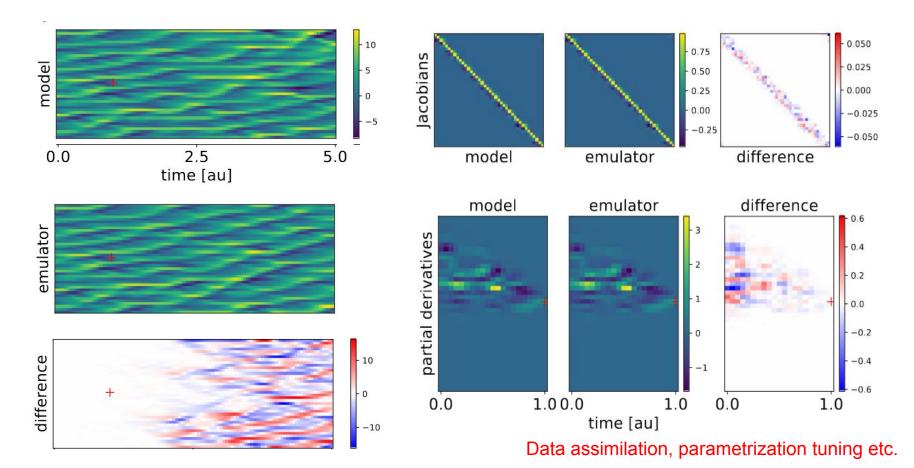




Training on partial system states



Trained emulators reproduce system states and derivatives

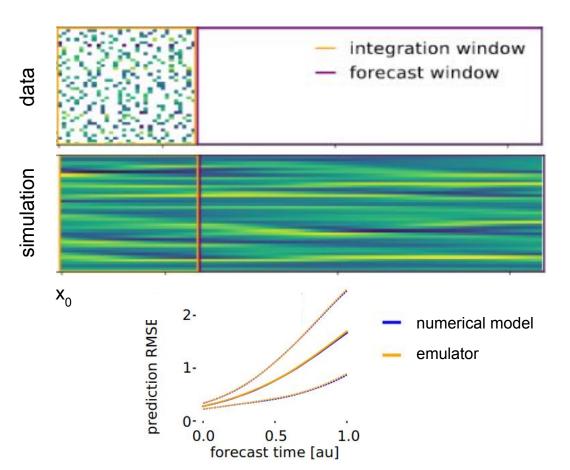


Emulators for 4D-Var data assimilation

 with differentiable dynamical model, estimate initial state x₀ from noisy & incomplete data.

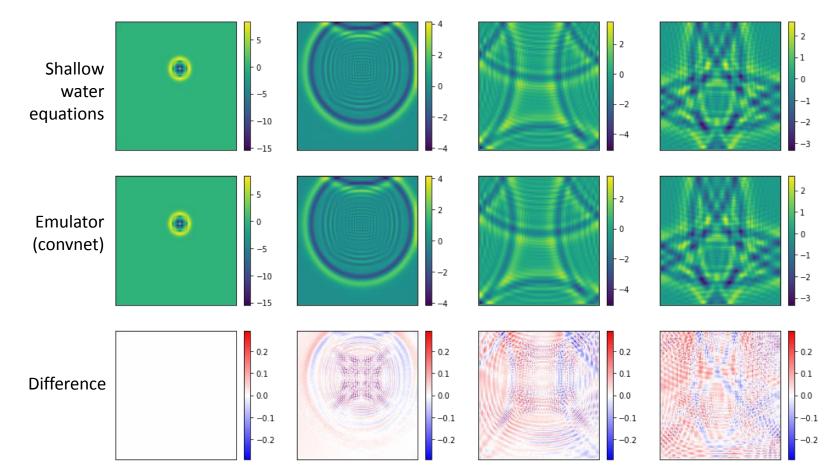
2) starting from $x_{0,}$, simulate future states beyond final data point.

(optional) evaluate prediction error

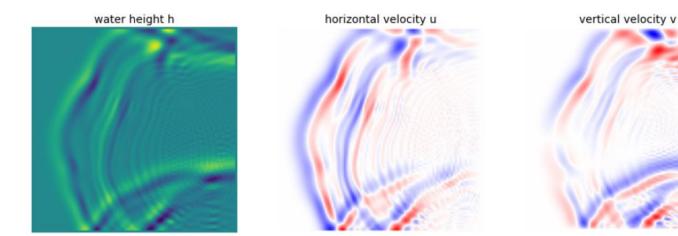


2D systems and beyond explicit solvers

Shallow Water Equations



Structure of SWE numerical solver



State update function of the numerical solver:

$$(h^{t+1}, u^{t+1}, v^{t+1}) = f(h^{t+1}, h^t, u^t, v^t)$$
 (semi-)implicit !

(other fluid equations: similar for h = pressure)

4

1.

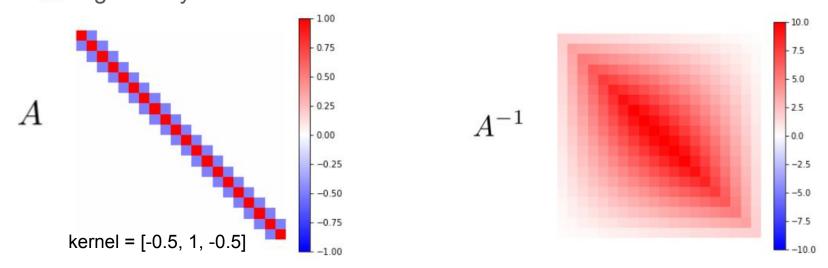
More specifically here:
$$A \ h^{t+1} = b$$

 $A = A(h^t, u^t, v^t),$
 $b = b(h^t, u^t, v^t)$

Implicit schemes = non-local state update functions

$$A \ h^{t+1} = b \qquad \qquad h^{t+1} = A^{-1}b$$

A and b may generally be local functions (in h^t, u^t, v^t), but A^{-1} generally is not!



Implicit schemes = non-local state update functions

$$A \ h^{t+1} = b \qquad \qquad h^{t+1} = A^{-1}b$$

A and b may generally be local functions (in h^t, u^t, v^t), but $A^{-1} {\rm generally}$ is not!

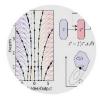
We could try:

- non-local feed-forward networks (lots of network parameters)
- U-Nets

(scaling with e.g. doubled resolution?)



Linear implicit network layers



Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models, and Beyond

http://implicit-layers-tutorial.org/

(linear) solve operations as part of a neural network model: for training need backpropagation!

1) forward pass:
$$y = \operatorname{layer}(x)$$
 , where $A(x) \ y = b(x)$

2) backward pass:
$$\frac{dy}{dx} = \frac{\partial y}{\partial \operatorname{vec}(A)} \frac{d\operatorname{vec}(A)}{dx} + \frac{\partial y}{\partial b} \frac{db}{dx}$$

Implicit function theorem (IFT) gives:

$$A\frac{\partial y}{\partial b} = I \qquad \qquad A\frac{\partial y}{\partial a_j} = -y_j I$$

 $\frac{d \operatorname{vec}(A)}{d x}, \frac{d b}{d x}$ depend on how we parametrize A(x), b(x)

Linear solvers

Any standard-library linear solver would do.

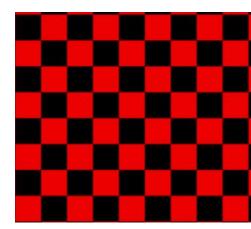
numpy.linalg.solve

linalg.solve(a, b)

For large system sizes (>>10³ grid points), use linear solvers that **scale** accordingly.

One possible choice: implement multi-color Gauss-Seidel in pytorch

- valid for an important class of **banded matrices** A.
- **iterative method**, initialize with estimate of solution \hat{y}
- divide grid points into colors (e.g. red vs black)
- iterations only require dot products $A \ \hat{y}$ -> GPU !



Linear implicit layer in simple pytorch

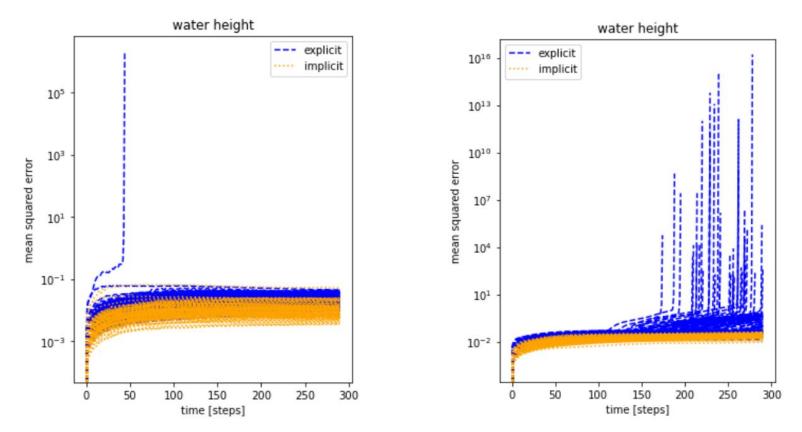
[this is essentially a re-write of torch.linalg.solve() in pure pytorch (no c++) and for custom solvers]

```
import torch
   from utils import linear_solver
   class LinearSolve(torch.autograd.Function):
4
       @staticmethod
       def forward(ctx, b, A):
                                    solve #1
           y = linear solve(A, b)
           ctx.save_for_backward(A, y) # torch.autograd logistics
           return y
       @staticmethod
       def backward(ctx, grad_output):
           A, y = ctx.saved_tensors
                                      # torch.autograd logistics
                               solve #2
           z = linear_solve(
               Α.Τ.
                             # tranpose of A
                            # backward gradient from reverse-mode differentiation : dL / dy
               grad output
           grad_input = (z,
                                                            # dL/dy * dy / db
                         -torch.bmm(z, y.transpose(-2, -1)) # dL/dy * dy / dA
           return grad_input
   class LinearLayer(torch.nn.Module):
       def init (self, comp bA):
           self.comp_bA = comp_bA # function that returns (b, A) as function of x
       def forward(self, x):
                                            b, A = f(x) and (db/dx, dA/dx)
           b, A = self.comp_bA(x)
           y = LinearSolve.apply(b, A)
           return y
```

Results on SWE

Solver step length: dt = 300s

dt = 600s



7x7 conv, 64, /2 pool, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv. 64 3x3 conv. 64 3x3 conv, 128, /2 3x3 conv. 128 3x3 conv, 128 * 3x3 conv, 128 3x3 conv. 256. /2 3x3 conv 756 3x3 conv, 256 3x3 conv. 256 3x3 conv, 256 3x3 conv. 512./2 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512 avg pool + fc 1000

Composability: implicit output in neural architectures

64-d

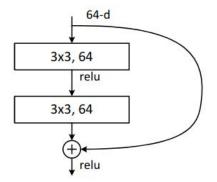
relu

relu

3x3,60

3x3, 64

+



Residual block: conv & relu

Residual block: stack(conv, implicit) & relu

implicit

output

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

arXiv:1512.03385v1 [cs.CV] 10 Dec 2015

Outlook

- (linear) implicit layers as flexible building blocks of neural networks
- scaling to large systems (Gauss-Seidel only a start: multigrid methods)
- expressivity of linear implicit layer & parametrization of A(x)

HELMHOLTZAI ARTIFICIAL INTELLIGENCE

Model-driven Machine Learning Group http://m-dml.org

David Greenberg

Marcel Nonnenmacher Tobias Machnitzki

Shivani Sharma

Kubilay Demir