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Figure 2: Schematic diagram of the concept 
for SSNAPD. Figure adapted from Ref. 3

Figure 3: Experimental setup for SSNAPD at the 
TriSol radioactive ion beam facility
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Figure 4: Preliminary testing results for one 
SSNAPD silicon detector using a mixed-  

calibration source
α

• SSNAPD will be integrated into 
the first superconducting 
solenoid (6T) of the TriSol 
radioactive ion beam facility


• Second and third solenoids are 
used as a magnetic 
spectrometer, separating 
reaction ejectiles of interest


• Construction of electronics, 
beamline infrastructure, and 
preliminary testing of 
detectors is ongoing

• Type I X-ray bursts: periodic explosions on the 
surface of neutron star binaries, resulting from the 
nuclear burning of H/He rich fuel accreted from a 
companion star 


• Transition between accretion and ~stable nuclear 
burning to explosive nucleosynthesis occurs rapidly 
- resulting in a characteristic increase in flux1 


• Modeling light curves allows for extraction of 
neutron star properties like the mass-radius 
relationship - but is sensitive to uncertainties in 
nuclear reaction rates2
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Figure 1: Light curves for a Type I X-ray burst. Panel (a) shows 
an observed light curve from Ref. 1.  Panel (b) shows the 
effects of variation in the  reaction rate on 

modeled light curves in Ref. 2. 
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• Radiative capture reactions - and especially 
 - have some of the most significant 

effects2 

• Reaction rates can often be constrained via the 

resonance strength :


15O(α, γ)19Ne
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• This requires measurement of the lifetime ( ), spin ( ) 
and particle-decay branching ratio of the resonant 
states in the product nucleus ( ). These branching 
ratios are often poorly and/or indirectly constrained.
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• Solenoid spectrometer: array of position-sensitive silicon detectors 
and target immersed in a ~uniform solenoidal magnetic field - can 
be used to constrain branching ratios!


• States of interest produced by transfer reactions, e.g. 
 for 


• Detection of ejectile triton allows for reconstruction of populated 
state 


• Subsequent -decay particles spiral helically to the magnetic axis 
with radius, period, and position given by 
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• Robust separation capabilities and high effieciency allow for 
background free measurements of low charged-particle branching 
ratios relevant to explosive astrophysical nucleosynthesis

z = Tcycv∥

Feel free to find me 
with any questions!


