

Feel free to find me with any questions!

- companion star
- nuclear reaction rates²

$$\omega\gamma = \frac{\hbar}{2\tau}(2J_r + 1)B_i(1 - B_i)$$

Development of the Solenoid Spectrometer for Nuclear Astrophysics and Decays

Cade Dembski, Dan Bardayan, Patrick O'Malley, Tan Ahn, Manoel Couder, Anna Simon University of Notre Dame Nuclear Science Lab

The Solenoid Spectrometer for Nuclear Astrophysics and Decays

- be used to constrain branching ratios!
- $^{19}F(^{3}He, t)^{19}Ne$ for $^{15}O(\alpha, \gamma)^{19}Ne$
- state
- with radius, period, and position given by

$$r = \frac{mv_{\perp}}{qB} \qquad T_{c_{\perp}}$$

- SSNAPD will be integrated into the first superconducting solenoid (6T) of the TriSol radioactive ion beam facility
- Second and third solenoids are used as a magnetic spectrometer, separating reaction ejectiles of interest
- Construction of electronics, beamline infrastructure, and preliminary testing of detectors is ongoing

Acknowledgments

This work was supported by the NSF under grants numbers: PHY-2011890 & PHY-2310059 & MRI Award # 2117687

• Solenoid spectrometer: array of position-sensitive silicon detectors and target immersed in a ~uniform solenoidal magnetic field - can

• States of interest produced by transfer reactions, e.g.

• Detection of ejectile triton allows for reconstruction of populated

• Subsequent α -decay particles spiral helically to the magnetic axis

 $2\pi m$ $z = T_{cyc} v_{\parallel}$

• Robust separation capabilities and high efficiency allow for background free measurements of low charged-particle branching ratios relevant to explosive astrophysical nucleosynthesis

NOTRE DAME