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Sensitivity studies indicate that the shape of the light curves of Type-l X-ray bursts—which is important for determining
the mass-radius relationship and rotation frequency of neutron stars—is sensitive to the a-capture breakout rates of a
few waiting point nuclei. One of these key Hot-CNO breakout reactions is 8Ne(a,p)?'Na. Two complementary
AbStraCt experiments are being planned to experimentally constrain the reaction rate: a direct measurement of the excitation
function in inverse kinematics with the MUSIC detector and the ATLAS facility at Argonne National Laboratory, and a
determination of the strengths of the key resonances in the compound nucleus 22Mg from an indirect measurement via
the ’Li("8Ne,t)**Mg(p)*'Na reaction with MUGAST+EXOGAM+ZDD at LISE @ GANIL. The current plans for each
experiment and the expected results will be discussed.
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Type-l X-ray bursts arise from a thermonuclear runaway on the surface of a neutron star that is
accreting H- and/or He-rich material from a companion star [1]

Waiting-point nuclei in the Hot-CNO cycles (e.g. ®Ne, T, /, = 1.67 s) restrict energy generation to

relationship and rotational frequency [5,6] /
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The Multi-Sampling lonization Chamber (MUSIC) at Argonne can be used to directly measure
the excitation function in inverse kinematics across a large center-of-mass energy range with a
single beam energy

Direct reaction at Argonne
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Previous investigations

cover center-of-mass energies E.,,, = 0.8 — 2.2 MeV.

2.5 MeV (sensitivity limit) with 56% statistical uncertainty
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Total '®Ne(a,p)?'Na cross section measurement (black points) by Anastasiou ef al. [8],
compared to Groombridge et al. [9] and calculations from resonance strengths of the mirror
nucleus by Mohr et al. [10] and Hauser-Feshbach caltulations with SMARAGD [11]

The '8Ne(a,p)?'Na breakout reaction becomes significant once the temperature reaches T >
0.8 GK, with peak temperatures T~1.4 GK [7]. The Gamow windows for this temperature range

The current leading experimental constraint from Anastasiou et al. [8] reached down to E ., =
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Resonance strength: wy = wl;XB,

Indirect reaction at GANIL

Coincident measurement of 22Mg* population via a-transfer reaction and proton decay to 4'Na
via MUGAST+EXOGAM+ZDD at LISE, scheduled for march 2026

Use a-transfer reaction to search for strong a states in 2°Mg near the alpha threshold (S(a) =
8143 keV), via the "Li("®Ne,t)??Mg*(»)?'"Na reaction

Constrain ®Ne(a,p)?'Na reaction rate through combined determination of
Alpha partial width (I, = C2S,xT,”") of 2Mg resonances
Branching ratio of proton in the final state (B,)

18
16
14

lll'lllllllllllllllllllllllllllllll

N —

3D render of the MUGAST + EXOGAM
+ ZDD setup @ LISE

Experiment parameters:
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Kinematic lines of the 7Li('8Ne,t)22Mg*(p )*'Na ZDD
reaction. Protons (tritons) are emitted at forward « 332-keV y-ray from 2"Na in EXOGAM
(backward) angles.
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