Kosmische Fabriken für die Elemente unseres Lebens

Roland Diehl

6.938 6

Ne

CS Caesing

Rb

Kosmische Nukleosynthese: Fragen...

- O Woher kommt eigentlich der Sauerstoff, den wir atmen?
- O Woher kommt Kohlenstoff, die Basis organischen Lebens?
- Wieso ist Silizium so reichlich vorhanden, aber Gold so selten und kostbar?
- Warum stellen wir uns nicht die gewünschten "Elemente" her?

Historischer / gesellschaftlicher Kontext

- Logik, Mathematik, Naturforschung in der Antike Aufklärung
- Natur-Beobachtung, Analyse um Erkenntnisse zu erwerben; Naturwissenschaft als akzeptiertes Denkmodell (16.-18.Jh)
- Kopernikus, Newton, Galileo, v.Humboldt, ... 0
- Chemie als Feld technologischer/medizinischer/... Hoffnung (19.Jh)
 - Spektral-Analyse Kirchhoff 1859, Valenzlehre, 0 Atom-Begriff... Benzol als Bestandteil 1865, Gruppierung chemische Elemente (Mendeleev)

Mendeleev 1871 (Wikipedia)

"Naturwissenschaften" entwickeln subatomare Physik (ab ~1900)

Entdeckung der Radioaktivität (Becguerel 1896, Marie Curie 1898), Strahlungsarten (α,β,γ) 0 (Rutherford 1898, Villard 1900); Elektronenkonfiguration der Atome und Periodensystem (Bohr 1913); Herstellung von Radium (I. Curie/F.Joliot-Curie 1934), Kernreaktion an Teilchenbeschleuniger (Cockroft-Walton/Van de Graaf 1938); Kernphysik, starke und schwache Wechselwirkung (Yukawa 1949)

astrophysikalische Diskussionen nehmen Fahrt auf (ab ~1920)

Sub-atomare Energiequelle des Sternenlichts (Eddington 1920), Geochemie der kosmischen 0 Elemente (Goldschmitt 1930), Wasserstoff-Fusion in der Sonne: Bethe-Weizsäcker Zyklus 1938; Kern/astrophysikalische Beschreibung der kosmischen Elementhäufigkeiten (Suess & Urey 1956), Beschreibungen kosmischer Nukleosynthese (Cameron 1957; Burbidge, Burbidge, Fowler, Hoyle 1957)

3

Kosmische Element-Häufigkeiten

- Signaturen aus den Eigenschaften von...
 - Atomkernen (welche Kerne werden leicht/mehr erzeugt?)
 - kosmischen Quellen (welche Fusionsreaktions-Umgebungen sind häufiger?

Der kosmische Materie-Kreislauf: Stern-Generationen

Vorsicht: In diesem Resultat stecken Modellvorstellungen über die kosmischen Quellen, über die Kernfusions-Reaktionen, über die kosmischen Mischprozesse.... → Es lohnt sich hier genauer hinzuschauen...

Die chemischen Elemente

1																		18
1 H hydrogen 1.0080 ± 0.0002	2		Кеу:										13	14	15	16	17	2 He helium 4.0026 ± 0.0001
3 Li lithium 6.94 ± 0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged standa atomic weigh	ber D ard tt									5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 O oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne 20.180 ± 0.001
11 Na sodium 22.990 ± 0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11		12	13 AI aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 Cl chlorine 35.45 ±0.01	18 Ar argon 39.95 ±0.16
19 K potassium 39.098 ± 0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ± 0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ± 0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ± 0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copp 63.54 ± 0.00	J er 16 03	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 85.468 ± 0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ± 0.001	40 Zr zirconium 91.224 ± 0.002	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 TC technetium [97]	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ± 0.01	46 Pd palladium 106.42 ± 0.01	47 Ac silve 107.8 ± 0.0) er (87 01	48 Cd cadmium 112.41 ± 0.01	49 In 114.82 ± 0.01	50 Sn 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 CS caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 lanthanoids	72 Hf hafnium 178.49 ± 0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ± 0.01	76 OS osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.9 ± 0.0	J d 97 91	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	84 Po polonium [209]	85 At astatine [210]	86 Rn radon [222]
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtiu	m roentge	nium co	112 Cn opernicium	113 Nh nihonium	114 FI flerovium	115 MC moscovium	116 Lv livermorium	117 TS tennessine	118 Og oganesson
[223]	[220]		[207]	[200]	[209]	[270]	[209]	[211]	[201]	[202		[200]	[200]	[290]	[290]	[293]	[294]	[294]
				57 La lanthanum 138.91 ± 0.01	58 Ce cerium 140.12 ± 0.01	59 Pr praseodymium 140.91 ± 0.01	60 Nd neodymium 144.24 ± 0.01	61 Pm promethium [145]	62 Sm samarium 150.36 ± 0.02	63 Eu europium 151.96 ± 0.01	64 Gd gadolinii 157.25 ± 0.03	ium ter 5 15 3 ±	65 6 b bium 8.93 162 0.01 ± 0	6 y 50 01 50 164 ±0	68 E 10 10 10 10 10 10 10 10 10 10	69 Tm thulium 168.93 ± 0.01	70 Yb ytterbium 173.05 ± 0.02	71 Lu lutetium 174.97 ± 0.01
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY				89 Ac actinium [227]	90 Th thorium 232.04 ± 0.01	91 Pa protactinium 231.04 ± 0.01	92 U uranium ^{238.03} ± 0.01	93 Np neptunium [237]	94 Pu plutonium [244]	95 Am americium [243]	96 Cm curiun [247]	n E n berk	97 Bk califor (47) (25)	3 99 f E nium einste 1] [25	2) 100 5 nium fermium 2) [257]	101 Md mendelevium [258]	n 102 No nobelium [259]	103 Lr Iawrencium [262]

For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.

..sortiert nach den Elektronen-Eigenschaften der Atomhülle – diese bestimmen die chemischen Eigenschaften

Die Vielfalt der Atomkerne

For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.

Das "Innere" der Atomkerne: die Nukleonen

- Nukleonen = komplexe Vielteilchen-Systeme
- Starke Kernkraft \rightarrow Bindung zwischen Nukleonen
- Schwache Kernkraft → Umwandlung n \leftarrow → p

Kernreaktionen in kosmischer Umgebung

- Plasma im Universum ist
 - zusammengesetzt aus unterschiedlichen Teilchensorten
 - hat eine thermische (=breite)
 Verteilung der Energien
 - Teilchenenergien liegen weit unter der Coulomb-Schwelle
 - Quanten-Tunnel-Effekt dominiert kosmische Reaktionen
 - o diese sind sehr selten

0

0

- Produkt der Maxwell-Boltzmann Energieverteilung mit dem exponentiellen Tunneln
 - → Gamov Peak relevanter Energien
 - 'S-Faktor' spiegelt die Kernkraft-Anteile wieder (Herausrechnen der Coulomb-Wirkungen)

Was wissen wir über Nukleosynthese-Quellen?

 Sterne fusionieren Atomkerne in ihrem Innern

unsere Sonne

 Stern-Explosionen erreichen auch Fusionsbedingungen

> der Cas A Supernova-Überrest

Sterne: Ein massereicher Stern

Was ist ein (massereicher) Stern?

Sterne sind gravitativ zusammengehaltene Kernreaktoren

Gravitation hält Sternengas zusammen

Kernfusion setzt Bindungsenergie der Nukleonen frei

Diese Energie wirkt der Schwerkraft entgegen: statt Kollaps ein lange Zeit stabiles Gleichgewicht

Wenn ein Brennstoff zur Neige geht erfolgt Kollaps bis es heiss genug für die nächste Fusionsreaktion ist

Stern-Struktur und ihre Entwicklung, im Detail...

Das "Kippenhahn Diagramm"

Erinnerung: die Vielfalt der Sterne

- Stern-Entwicklung hängt von der Sternmasse ab:
 - rasch f
 ür massereiche, langsam f
 ür massearme Sterne

- Hauptreihe (H)
- Riesensterne (He)
- o kompakte Reststerne

ssbach School of Nuclear Astrophysics, 17.-21. März

Gravitativer Kollaps und Supernova

Shell-Structured Gravitational Supernova Evolved Massive Star Gore Co Shock Wave apse **Proto-Neutron Star** Shock Region Neutrino Heating **Explosive Nucleosynthesis** of Shock Region from Inside

Das dynamische interstellare Medium - 100 Million Jahre in 30 sec -

- Sterne entstehen, ihre Winde und Explosionen hinterlassen deutliche Spuren
- Simulationen erhellen diese inhärent komplexen Vorgänge

courtesy Miguel deAvillez

100 Mj, 1 kpc Volumen, MHD Simulation der Gasdynamik, mit Sternbildung und Supernova-Explosionen

...astrophysikalische Forschung...

- Die "Natur" ist unfaßbar vielfältig.
 Wir sind neugierig auf "Gesetzmäßigkeiten" der Natur
- Im Forschen wenden wir Methoden an, die uns systematisches, gut kommunizierbares, gemeinsames Lernen erleichtern, und reflexives (statt habituelles) Denken praktizieren.

☆ Unsere Situation in der Astrophysik ist etwa so: "Wir versuchen, aus dem, was wir am Strand finden, etwas über das Geschehen in den Tiefen des Ozeans herauszufinden ..." (→ Spuren-Leser)

25

Forschung: Methodisches

Wie arbeiten wir richtig, im Sinn von "wissenschaftlich"?

Wo steht "nukleare Astrophysik" hierbei?

Thomas Kuhn (1922-1996):

"Wissenschaft besteht aus routinemäßigem Arbeiten an Details eines Themas ('normal'), und aus großen Veränderungen die eine Frage / ein Feld in neuem Licht erscheinen lassen (Paradigmen-Verschiebungen). Beides ist 'Wissenschaft'. Die wissenschaftliche Gemeinschaft findet einen Konsens, denn es gibt keine objektiven Kriterien. "

Karl Popper (1902-1994):

"Eine wissenschatliche Theorie muss Mindest-Anforderungen erfüllen um als 'wissenschaftlich' anerkannt zu sein: Klar formuliert inklusive Voraussetzungen, Grenzen, und Vorhersagen, und sie muss durch Tests falsifizierbar sein. Nur das Befassen mit solchen Theorien und ihrer Tests gilt als 'wissenschaftliches Arbeiten'. "

• Was meinen Sie ??

Astronomische Boten

 Für kosmische Kernreaktionen: Elektromagnetische Strahlung (γ), Materieproben, neue Astronomien, klassische Astronomie/Spektroskopie

Astronomische Beobachtungs-Fenster im e.m. Spektrum

Astronomische Instrumente

