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Credit: ESO/L. Calçada

10/16/2017

GW170817, Aug 17, 2017

Neutron stars:

• Remnants of core-collapse 
supernovae

• Typical masses of 1.4 Msol

• Typical radii of only O(10) km 

Neutron star mergers:

• Coalescence of two neutron stars
• Can be detected in gravitational 

waves and EM spectrum 
(Multimessenger astrophysics)

• Explore highest densities in the 

Cosmos!
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(Short) History of neutron stars
• 1932: Discovery of the neutron by Chadwick (Nobel Prize).

• 1933/34: Proposition of the existence of neutron stars by 
Baade and Zwicky as engines for supernovae.

Walter Baade

Fritz Zwicky
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(Short) History of neutron stars
• 1932: Discovery of the neutron by Chadwick (Nobel Prize).

• 1933/34: Proposition of the existence of neutron stars by 
Baade and Zwicky as engines for supernovae.

• 1939: Tolman, Oppenheimer and Volkoff calculate neutron-

star mass limit of 0.7 Msol for cold, degenerate neutron gas.

J. Robert Oppenheimer George Volkoff Richard Tolman
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(Short) History of neutron stars
• 1932: Discovery of the neutron by Chadwick (Nobel Prize).

• 1933/34: Proposition of the existence of neutron stars by 
Baade and Zwicky as engines for supernovae.

• 1939: Tolman, Oppenheimer and Volkoff calculate neutron-

star mass limit of 0.7 Msol for cold, degenerate neutron gas.

• 1967: Bell finds regular pulse repeating every 1.3 s in data 

taken by radio telescope built with A. Hewish, called it “Little 
Green Man-1” → Discovery of pulsars (PSR B1919+21).

Jocelyn Bell (1967)
Credit: NASA
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(Short) History of neutron stars
• 1932: Discovery of the neutron by Chadwick (Nobel Prize).

• 1933/34: Proposition of the existence of neutron stars by 
Baade and Zwicky as engines for supernovae.

• 1939: Tolman, Oppenheimer and Volkoff calculate neutron-

star mass limit of 0.7 Msol for cold, degenerate neutron gas.

• 1967: Bell finds regular pulse repeating every 1.3 s in data 

taken by radio telescope built with A. Hewish, called it “Little 
Green Man-1” → Discovery of pulsars (PSR B1919+21).

• 1974: Hewish wins Nobel prize for the discovery of pulsars.

• 1974: Discovery of the Hulse-Taylor pulsar PSR B1913+16, 
first binary neutron-star system. Tests of General Relativity, 

e.g., gravitational waves lower orbital frequency → observed!

• 2010, 2013, 2019: Discovery of 2 Msol neutron stars. 

Weisberg and Taylor, 2004
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(Short) History of neutron stars
• 1932: Discovery of the neutron by Chadwick (Nobel Prize).

• 1933/34: Proposition of the existence of neutron stars by 
Baade and Zwicky as engines for supernovae.

• 1939: Tolman, Oppenheimer and Volkoff calculate neutron-

star mass limit of 0.7 Msol for cold, degenerate neutron gas.

• 1967: Bell finds regular pulse repeating every 1.3 s in data 

taken by radio telescope built with A. Hewish, called it “Little 
Green Man-1” → Discovery of pulsars (PSR B1919+21).

• 1974: Hewish wins Nobel prize for the discovery of pulsars.

• 1974: Discovery of the Hulse-Taylor pulsar PSR B1913+16, 
first binary neutron-star system. Tests of General Relativity, 

e.g., gravitational waves lower orbital frequency → observed!

• 2010, 2013, 2019: Discovery of 2 Msol neutron stars. 

• 2017: First discovery of gravitational waves from neutron-star      

merger, GW170817!

10/16/2017
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What stabilizes Neutron Stars?

Weak Interaction

Electromagnetic 
interaction

Strong 
Interactions

Gravity
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What stabilizes Neutron Stars?

Gravity

Pressure

Neutron stars are stabilized against gravity by pressure 

of strongly interacting matter.

Neutron star: Atomic nucleus, e.g., 208Pb:

Although the corresponding scales differ by many orders 

of magnitude, properties of neutron stars and nuclei are 
strongly connected.

Nuclear interactions exert outward pressure that 

stabilize both nuclei and neutron stars!

Nuclear saturation density
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The equation of state

Neutron Stars described by Tolman-

Oppenheimer-Volkoff (TOV) equations, 
equation of state (EOS) only ingredient: 

relation between density, composition, 

temperature, energy, pressure.

• Neutron stars have typical temperatures of  
T=107-108 K → Eth = 8 keV ≪ EF

• Therefore, neutron stars can be 

considered objects at T=0

• Then, EOS relates pressure p and energy 

density 𝜖

Equation of state

Observation

Maximum Mass𝝆sat
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The equation of state
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equation of state (EOS) only ingredient: 
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The equation of state

Credit: N. Wex
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The equation of state

Credit: N. Wex

Neutron stars:

➢ Many different models!

➢ Considerable uncertainty for EOS!

➢ No precise data points yet.
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NS (multi-messenger) observations

First neutron-star merger 

observed on Aug 17, 2017 :

(Gamma-ray)

LIGO/VIRGO collaboration, ApJL  848, L12 (2017)

NICER
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NS (multi-messenger) observations

First neutron-star merger 

observed on Aug 17, 2017 :

(Gamma-ray)

LIGO/VIRGO collaboration, ApJL  848, L12 (2017)

NICER
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NS (multi-messenger) observations

First neutron-star merger 

observed on Aug 17, 2017 :

(Gamma-ray)

LIGO/VIRGO collaboration, ApJL  848, L12 (2017)

NICER
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Microscopic Nuclear Physics
Neutron-star structure depends on the EOS, given by                   

➢ Baryon density:

➢ Energy density:

➢ Pressure: 

In neutron star, we have neutrons, protons, and electrons in 
beta equilibrium. Therefore, EOS is described by

where x is the proton fraction,                 .

• x = 0.5: Symmetric nuclear matter: Connection to laboratory experiments

• x = 0.0: Pure neutron matter: Connection to astrophysical observations.
• Difference is called symmetry energy: Connection to heavy-ion collisions, neutron skins, …
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Microscopic Nuclear Physics n

n

n

n

n

n

n n

Many different approaches to calculate               but I will

focus on microscopic calculations where we solve

 

see also Carbone, Drischler, Gandolfi, Hagen, Hebeler, Holt, 

Lovato, Novario, Piarulli, Schwenk,, …
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Microscopic Nuclear Physics n

n

n

n

n

n

n n

Many different approaches to calculate               but I will

focus on microscopic calculations where we solve

 We need:

❑ A theory for the strong interactions among nucleons

❑ A computational method to solve the many-body 
Schrödinger equation:

      

Chiral Effective Field Theory

e.g., many-body perturbation theory, quantum 

Monte Carlo, coupled cluster, self-consistent 
Green’s function, …

see also Carbone, Drischler, Gandolfi, Hagen, 

Hebeler, Holt, Lovato, Novario, Piarulli, Schwenk,, …
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Chiral Effective Field Theory

• Atomic nucleus consists of strongly interacting 

matter.

• Made up by quarks and gluons (Quantum 

Chromodynamics).

• Extremely complicated to solve! 

Example: 4He
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Chiral Effective Field Theory

• Atomic nucleus consists of strongly interacting 

matter.

• Made up by quarks and gluons (Quantum 

Chromodynamics).

• Extremely complicated to solve! 

• Probing a nucleus at low energies does not 

resolve quark substructure of nucleons! 

• We can describe the nucleus in terms of 

neutrons (udd)  and protons (uud) as effective 

degrees of freedom.

Example: 4He
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Solve Schrödinger equation:

Hamiltonian is sum of kinetic and interaction parts:

Two-nucleon forces Three-nucleon forces

Chiral Effective Field Theory
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Chiral Effective Field Theory

Holt et al., PPNP 73 (2013)
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Chiral Effective Field Theory

Weinberg, van Kolck, Kaplan, Savage, Wise, 
Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

(2 LECs)

(7 LECs)

(15 LECs)

(2 LECs: 3N)

Holt et al., PPNP 73 (2013)
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Chiral Effective Field Theory

Weinberg, van Kolck, Kaplan, Savage, Wise, 
Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

(2 LECs)

(7 LECs)

(15 LECs)

(2 LECs: 3N)

Holt et al., PPNP 73 (2013)
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Chiral Effective Field Theory

(2 LECs)

(7 LECs)

(15 LECs)

(2 LECs: 3N)

Systematic expansion of nuclear forces in momentum

Q over breakdown scale Λb :

• Based on symmetries of QCD

• Pions and nucleons as explicit degrees of freedom

• Power counting scheme results in systematic

expansion, enables uncertainty estimates!

• Natural hierarchy of nuclear forces

• Consistent interactions: Same couplings for two-

nucleon and many-body sector

• Fitting: NN forces in NN system (NN phase shifts), 

3N forces in 3N/4N system (Binding energies, radii)
Weinberg, van Kolck, Kaplan, Savage, Wise, 

Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...
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Chiral Effective Field Theory

Results for chiral EFT calculations of nuclei:

Hebeler et al., ARNPS (2015)

Excellent description of properties of nuclei up to 
the medium-mass region (fits to light nuclei).

Oxygen

Arthuis et al., arXiv:2401.06675
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Uncertainty

Present theoretical predictions for nuclear systems are limited by:

• our incomplete understanding of nuclear interactions, 
• and our ability to reliably calculate these strongly interacting systems.

Simonis et al., PRC (2016) Krueger, IT et al.,PRC (2013)
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The Hamiltonian depends on a set of parameters: low-energy couplings (LECs).

Uncertainty
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Uncertainty

Schematic! 1S0 phase 

nucleon-nucleon 

scattering phase 

shift
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Uncertainty

Schematic! 1S0 phase 

nucleon-nucleon 

scattering phase 

shift
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Uncertainty

The uncertainty of 

nuclear interactions 

is mapped into the 

uncertainty of model 

parameters (LECs)

More details:

Somasundaram et al., PRC 2024
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Uncertainty

Somasundaram, IT, et al., PRC (2024)
Can work to desired accuracy with error estimates!
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Uncertainty

Use Machine Learning / Artifical Intelligence to propagate uncertainties
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Result for the equation of state

Use Machine Learning to propagate 200,000 interactions to EOS!

Armstrong et al. arXiv 2502.03680
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Result for the equation of state

Armstrong et al. arXiv 2502.03680

Use Machine Learning to propagate 200,000 interactions to EOS!
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Chiral EFT and neutron stars

TOV eqs.

Koehn et al., arXiv:2402.04172
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NMMA framework:

- EOS consistent 

with theory 

- Masses and 

NICER via 

published 

posteriors

- Simultaneous full 

GW and KN 

analyses

- Available online.

Dietrich, Coughlin, Pang, Bulla, 
Heinzel, Issa, IT, Antier, Science 
(2020)

Pang et al., Nat. Comm. (2023)

Nuclear-physics Multi-Messenger Astrophysics (NMMA)
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Chiral Effective Field Theory

(2 LECs)

(7 LECs)

(15 LECs)

(2 LECs: 3N)

BUT: There are still many open questions and 

problems!

• What is the breakdown scale? Does it change in 

the many-body system?

      

Drischler et al., 
PRC (2020)

Weinberg, van Kolck, Kaplan, Savage, Wise, 
Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...
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Chiral Effective Field Theory

(2 LECs)

(7 LECs)

(15 LECs)

(2 LECs: 3N)

BUT: There are still many open questions and 

problems!

• What is the breakdown scale? Does it change in 

the many-body system?

• How do results depend on the regularization 

scheme (explicit form of the interaction) and scale 

(cutoff necessary in many-body methods)?

• Does this series converge in the many-body 

system?

• What is the correct power counting scheme?

• How to best determine all unknown coefficients?

      
Weinberg, van Kolck, Kaplan, Savage, Wise, 

Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...
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The future: Cosmic Explorer (CE)

• 3rd- generation Gravitational-Wave Detectors will increase sensitivity by at least factor of 10

• US-proposal: Cosmic Explorer
• EU-proposal: Einstein Telescope

Source: CE consortium
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The future: Cosmic Explorer (CE)

Evans et al., arXiv:2306.13745

• CE will detect the majority 

of neutron-star mergers in 

the universe!

• GW170817 would have 

been observed with an 

SNR 100 times higher.

• Will measure neutron-star 

radius to within a few 

percent!
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Thanks

C. Armstrong, J. Carlson, S. De, S. Gandolfi, B. Reed, R. 
Somasundaram (LANL)

K. Hebeler, H. Goettling, A. Schwenk, I. Svensson (TU 
Darmstadt)

K. Lund, S. Reddy (INT Seattle)

J. Margueron (IPN Lyon & MSU)

K. Godbey, P. Giuliani (MSU)

D. Brown, C. Capano (Syracuse University)

R. Essick, P. Landry (CITA)

T. Dietrich, H. Koehn, N. Kunert, H. Rose (University of Potsdam)

P. Pang, C. van den Broeck, T. Wouters (Nikhef)

M. Coughlin (University of Minnesota)

M. Bulla (Ferrara University)

Thank you for your 
attention!
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