Cosmic Nucleosynthesis: Lessons from Gamma-Ray Spectroscopy

Proton -> Neutron

lithium

16.938, 6.997

Na

potassiu

Rb noidum www.

Roland Diehl

Technical University München and MPE and Origins Cluster emeritus Garching

Contents:

- 1. Nucleosynthesis sources and their Ejecta
- Learning from γ-ray observations supernova explosions large scale nucleosynthesis star clusters positrons
- 3. Conclusions and Prospects

with work from (a.o.) Martin Krause, Karsten Kretschmer, Moritz Pleintinger, Thomas Siegert, Rasmus Voss, Wei Wang, Christoph Weinberger

R

te

Ne neon

caesiur 55

20.180

Ar argon

Figure: ChETEC 2021

Cosmic Nucleosynthesis: Different Complementing Observing Methods

Astronomy of Cosmic Abundances : a Multi-Messenger Enterprise

Gamma-Ray Astronomical Telescopes: Interaction of high-energy photons with matter

Imaging principles for a MeV-range y-ray telescope

Compton Telescopes and Coded-Mask Telescopes

Achievable Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution \geq deg Nuclear Astrophysics School, Russbach (A), Mar 21, 2025

INTEGRAL Cosmic Photon Measurements: The SPI Ge γ-Spectrometer

Coded-Mask Telescope Energy Range 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16°

INTEGRAL: Dominance of instrumental background

SPI Ge detector spectra

The Challenges

☆Understand the sources of new nuclei

☆Trace the flows of cosmic matter

Nuclear Astrophysics School, Russbach (A), Mar 21, 2025

⁵⁶Ni radioactivity $\rightarrow \gamma$ -Rays, e⁺ \rightarrow leakage/deposit evolution

SNIa and SN2014J: Early ⁵⁶Ni (τ~8.8d)

Spectra from the SN at ~20 days after explosion

Clear detections of the two strongest lines expected from ⁵⁶Ni (should be embedded!)

⁵⁶Ni mass estimate (backscaled to explosion): ~0.06 M_☉ (~10%)

i.e.: not the single-degenerate M_{chandrasekhar} model, to observer

but rather a 'double detonation, i.e.

either 2 WDs (double-degenerate) or a He accretor (He star companion)

\rightarrow SN 2014J looks "normal", but is not

Nuclear Astrophysics School, Russbach (A), Mar 21, 2025

SN2014J data Jan – Jun 2014: ⁵⁶Co lines

Doppler broadened \checkmark

from models

Diehl+ 2015

SN2014J data Jan – Jun 2014: ⁵⁶Co lines

- ☆ Split into 4 time bins
- Coarse & fine spectral binning
- → Observe a structured and evolving spectrum
- expected: gradual appearance of broadened ⁵⁶Co lines
 ^{CP} Diehl et al., A&A (2015)
- note: normally, we do not see such fluctuations in 'empty-source' spectra!

Positron annihilation in SN2014J

- The 511 keV line is marginally detected
 - ☆ Red-shifted by 10-15 keV
 - ☆ Flux consistent with
 ~⁵⁶Co line fluxes
 → ~all e⁺ annihilating

positron escape is ~%

Brahe, Hoeflich, & Diehl 2022

Model study

SN1987A

Kamiokande

IMB

Baksan

12 14

8 10

75

Energy (keV) Boggs+2015

80

Energy [MeV]

Inergy [MeV]

40

30

20

10

50

30

20

- Witnessing the final core collapse of a massive star of mass 22 M_{\odot} in Feb 1987
- Witness neutrino burst from core collapse
- Witness radioactivelypowered SN afterglow and

Gravitational Collapse and SN

Cas A with JWST

- The Cas A SNR displays a great variety of features that reflect the ccSN explosion history and dynamics
 - ☆ interaction of the SN shock with surrounding CSM
 - ^Cshock and dust
 - Synchrotron emission
 - destruction of ISM clouds
 - ☆ internal dynamics of the expanding remnant
 - CSM structure remains
 - ^Cexplosion asymmetry remains
 - RT lobes
 - jets
 - reverse-shocked ejecta
 - ☆ light echoes

Cas A in X rays

18

 Cas A SNR composition and dynamics is reflected in X rays

☆ interaction of the SN shock with surrounding CSM

- ^Cshock acceleration (e⁻)
- synchrotron emission, non-thermal Bremsstrahlung
- ☆ composition of remnant
 - [©]reverse-shocked ejecta ^C characteristic lines from highly-ionised species

Beyond X rays: Locating the inner Ejecta in Cas A

NuSTAR Imaging in hard X-rays (3-79 keV; ⁴⁴Ti lines at 68,78 keV) →

first mapping of radioactivity in a SNR

- Both ⁴⁴Ti lines detected clearly
- redshift ~0.5 keV \rightarrow 2000 km/s asymmetry
- ⁴⁴Ti flux consistent with earlier measurements
- Doppler broadening: (5350 \pm 1610) km s⁻¹
- Image differs from Fe!!

^G⁴⁴Ti → TRUE locations of inner-SN ejecta
 ^G⁶Fe-line X-rays are biased from ionization of plasma by reverse shock

NuSTAR update: 44Ti in Cas A

☆ Imaging resolution allows to spatially resolve Cas A's ⁴⁴Ti:

2.4 Msec NuSTAR campaign

Grefenstette et al. 2017

NuSTAR details c^{= 44}Ti in Cas A

⁴⁴Ti Cas A: INTEGRAL/SPI confirmations of bulk redshift

Understanding the filamentary detail of JWST image

SN explosion seeds a bubble structure that evolves into filaments

JWST image detail

SN simulation

Orlando+2025

\rightarrow "forget about the "onion shell" (Raph Hix)

The Challenges

☆Understand the sources of new nuclei

Pense Molecular Clouds Unterscellar Medium M

☆Trace the flows of cosmic matter

²⁶Al γ-rays from the Galaxy

26 Al γ -rays and the galaxy-wide massive star census

Radioactivities from massive stars: ⁶⁰Fe, ²⁶Al

→ Messengers from Massive-Star Interiors!

... complementing neutrinos and asteroseismology!

Processes:

- ☆ Hydrostatic fusion
- ☆ WR wind release
- ☆ Late Shell burning
- ☆ Explosive fusion
- ☆ Explosive release

Massive-Star Groups: Population Synthesis

Diffuse radioactivity throughout the Galaxy

Roland Dieh

Nuclear Astrophysics School, Russbach (A), Mar 21, 2025

Diffuse radioactivity throughout the Galaxy

✓ PSYCO modeling: (30000 sample optimisation)
 → best: 4-arm spiral 700 pc, LC06 yields, SN explosions up to 25 M_☉

- ^G SPI observation: → full sky flux (1.84 ±0.03) 10⁻³ ph cm⁻² s⁻¹
- ^C flux from model-predicted ²⁶Al: → (0.5..13) 10⁻⁴ ph cm⁻² s⁻¹ → too low
- Best-fit details (yield, explodability) depend on superbubble modelling (here: sphere only)

Massive Star Groups in our Galaxy: ²⁶Al γ-rays

How massive-star ejecta are spreading...

• ²⁶Al shows apparently higher galactocentric rotation (?)

Kretschmer+(2013)

How massive-star ejecta are spread out...

Superbubbles observations in other galaxies

JWST & H

Simulations of (inhomogeneous) galactic evolution

 \rightarrow ejecta with excess velocities appear naturally within a spiral galaxy

3D SPH simulation: analyze velocities of ²⁶Al-enriched matter from star formation activity

Orion-Eridanus: A superbubble blown by stars & supernovae

ISM is driven by stars and supernovae \rightarrow Ejecta commonly in (super-)bubbles

38

Nuclear Astrophysics School, Russbach (A), Mar 21, 2025

3D MHD sim, 0.1..0.005 pc resolution Krause+ 2013ff

1815

805 1810 Energy [keV]

⁶⁰Fe on Earth from recent nearby supernovae?

The Sun is (now) located inside a hot cavity (the "Local Bubble")

created by SN explosions, recent ones adding ejecta flows

see also Zucker+ 2022 and O'Neill+2024 for updates on the solar vicinity with superbubbles, clusters, molecular gas...

²⁶Al and ⁶⁰Fe in the Local Bubble

3D hydro simulations of Local Bubble evolution

²⁶Al predominantly in hot bubble interiors, ⁶⁰Fe deposition at bubble walls

Siegert, Schulreich+,2024

Nuclear Astrophysics & Gamma-Ray Spectroscopy - Summary

☆ (even) supernova explosions are not spherically symmetric
 ⁶ ⁵⁶Ni and how it reveals its radiation in SN2014J
 → SN Ia diversity; sub-Chandra models?
 ⁶ ⁴⁴Ti image and line redshift in CasA; SN87A
 → ccSupernovae interiors are fundamentally 3D/asymmetric
 ⁶ ⁶ NSMs/kilonovae are fundamentally very asymmetric, & rare
 ⁶ ⁶ Novae are good candidates, no gamma rays seen yet

☆ Cycling of cosmic gas through sources and ISM is a challenge

- ^{CP 26}Al preferentially appears in superbubbles
 - \rightarrow massive-star ingestions rarely due to single WR stars or S \hat{N}_{e_0}
- [©]What is the role of SNe & superbubbles in mixing of ISM??
- ^{CP} How are gas flows in and above/below the disk linked?

☆ Different messengers complement each other

- Radioactivity provides a unique and different view on cosmic isotopes (via gamma rays, stardust, CRs, sediments)
- INTEGRAL was ended; a next gamma-ray telescope (light-weight Compton telescope) in 2040+??; COSI (2027) is a great first step ...

sotopes