

European Research Council Established by the European Commission

High-precision abundance analysis of a unique CEMP-no star in Sculptor

Francisco Cuadra – University of Florence 1st year PhD student Supervisor: Ása Skúladóttir Co-supervisor: Romain Lucchesi

01/11

 \succ Absence of metals \rightarrow Population III (Pop III)

- > Huge masses \rightarrow brief lifetimes ($t_{lt} \sim Myr$)
- \succ Stellar nucleosynthesis + SNe \rightarrow interstellar medium enrichment

[e.g., Hirano et al., 2014, Frebel and Norris, 2015, Rossi et al., 2021]

 \succ Absence of metals \rightarrow Population III (Pop III)

- > Huge masses \rightarrow brief lifetimes ($t_{lt} \sim Myr$)
- \succ Stellar nucleosynthesis + SNe \rightarrow interstellar medium enrichment

[e.g., Hirano et al., 2014, Frebel and Norris, 2015, Rossi et al., 2021]

01/11

 \succ Absence of metals \rightarrow Population III (Pop III)

- > Huge masses \rightarrow brief lifetimes ($t_{lt} \sim Myr$)
- \succ Stellar nucleosynthesis + SNe \rightarrow interstellar medium enrichment

[e.g., Hirano et al., 2014, Frebel and Norris, 2015, Rossi et al., 2021]

01/11

 \succ Absence of metals \rightarrow Population III (Pop III)

- > Huge masses \rightarrow brief lifetimes ($t_{lt} \sim Myr$)
- \succ Stellar nucleosynthesis + SNe \rightarrow interstellar medium enrichment

[e.g., Hirano et al., 2014, Frebel and Norris, 2015, Rossi et al., 2021]

Stellar archaeology

[Based on Salvadori et al., 2015]

> Milky Way (MW) stellar Halo

- > Dwarf galaxies satellites of the MW
 - Dwarf Spheroidal galaxies (dSphs)

02/11

Ultra Faint Dwarf galaxies (UFDs)

$$[X/Y] \equiv \log\left(\frac{N(X)}{N(Y)}\right) - \log\left(\frac{N(X)}{N(Y)}\right)_{\odot}$$

Stellar archaeology

Metal-poor: < 1% solar

[[]Based on Salvadori et al., 2015]

> Milky Way (MW) stellar Halo

- > Dwarf galaxies satellites of the MW
 - Dwarf Spheroidal galaxies (dSphs)

02/11

Ultra Faint Dwarf galaxies (UFDs)

$$[X/Y] \equiv \log\left(\frac{N(X)}{N(Y)}\right) - \log\left(\frac{N(X)}{N(Y)}\right)_{\odot}$$

Carbon Enhanced Metal-Poor stars

[Credits: R. J. Hall]

≻ [Fe/H] < -2

- ≻ [C/Fe] > + 0.7
- \succ No n-capture enrichment \rightarrow CEMP-no
- > Descendants of Pop III exploded as faint SNe ($\varepsilon_{SN} \lesssim 10^{51} {\rm erg}$)

03/11

> Light elements enrichment \rightarrow high [C/Fe]

[e.g., Beers et al., 2005, Vanni et al., 2023]

Carbon Enhanced Metal-Poor stars

[Credits: R. J. Hall]

≻ [Fe/H] < -2

- ≻ [C/Fe] > + 0.7
- > No n-capture enrichment \rightarrow CEMP-no
- > Descendants of Pop III exploded as faint SNe ($\varepsilon_{SN} \lesssim 10^{51} {\rm erg}$)

03/11

> Light elements enrichment \rightarrow high [C/Fe]

[e.g., Beers et al., 2005, Vanni et al., 2023]

CEMP-no stars

04/11

[Frebel and Norris, 2015]

Non-uniform distribution

Difference in star formation conditions

> Do the characteristics of Pop III stars depend on the formation environment?

DR20080

[[]Skúladóttir et al., 2024]

- Sculptor dSph New CEMP-no star!
- > Recently discovered [Skúladóttir et al., 2024]: medium-resolution ($R = \frac{\lambda}{\Delta\lambda}$) and low S/N
- > VLT/UVES high-resolution follow-up
- > 8 h observations in 3 spectral bands (optical

Carbon band

06/11

Carbon band

06/11

Abundances derivation

07/11

Comparison with MW CEMP-no stars

Comparison with MW CEMP-no stars

Comparison with MW CEMP-no stars

Multiple enrichment models

> [Si/0]_{NLTE} = −1.92 ± 0.39
> [C/0]_{NLTE} = 0.07 ± 0.33
> Region sparsely populated by SN yield models
> Only Pop III dominated models are consistent

09/11

[Adapted from Vanni et al., 2024]

Pop III progenitor(s) properties

10/11

[Following the approach of Vanni et al., 2024]

Pop III progenitor(s) properties

NOT A GOOD FIT!

10/11

[Following the approach of Vanni et al., 2024]

Pop III progenitor(s) properties

NOT A GOOD FIT!

10/11

[Following the approach of Vanni et al., 2024]

Conclusions

- First high-precision analysis of DR20080!
 - Abundances measured for 17 elements + 4 upper limits
 - CEMP-no star: $[Fe/H]_{NLTE} \simeq -3.08$; $[C/Fe]_{NLTE} \simeq +1.42$; $[Ba/Fe]_{NLTE} \simeq -1.25$; $[Eu/Fe]_{NLTE} < +0.3$
- > Unique abundance pattern
- \succ SNe yield model fitting \rightarrow multiple enrichment dominated by Pop III stars
- > DR20080 is an excellent candidate to be a direct descendant of Pop III stars

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (TREASURES - grant agreement No. 101117455).

Conclusions

- First high-precision analysis of DR20080!
 - Abundances measured for 17 elements + 4 upper limits
 - CEMP-no star: $[Fe/H]_{NLTE} \simeq -3.08$; $[C/Fe]_{NLTE} \simeq +1.42$; $[Ba/Fe]_{NLTE} \simeq -1.25$; $[Eu/Fe]_{NLTE} < +0.3$
- > Unique abundance pattern
- > SNe yield model fitting \rightarrow multiple enrichment dominated by Pop III stars
- > DR20080 is an excellent candidate to be a direct descendant of Pop III stars

Thank you for your attention

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (TREASURES - grant agreement No. 101117455).