20th Russbach School on Nuclear Astrophysics, March 17, 2025

The total cross-section measurement for the reaction ³⁷Cl(α,n)⁴⁰K using HeBGB detector

Honey Arora Postdoctoral Researcher

Outline of the Talk

- Why
- How
- What
- Experimental Limitations
- Experimental Observations
- Future Plans

The Potassium Case

One of the most Prolific element on Earth!

 γ -rays from the decay of ⁴⁰K are detectable anywhere on Earth

Comparable to age of Earth

Existence of Potassium Inside The Planet?

Existence of Potassium In The Solar System

Lugaro et al., Progress in Particle and Nuclear Physics, 102 (2018)

Evolution of Radiogenic Heating of Earth

for 20% of total heat produced in mantle

Frank et al., Icarus (2015)

F. Nimmo eta I., Astro Jour Lett 903:L37 (2020)

Atmospheric-Evolution

How is ⁴⁰K produced?

Oxygen burning under conditions of hydrostatic equilibrium

> Explosive oxygen burning in Type II supernova

Explosive carbon burning in Stellar environments 1.8 < T₉ < 2.9

> Timmes et al., AJS 98, 617 (1995) The et al. Samland, AJ 496, 155 (1998)

Destruction of ⁴⁰K

- Destroyed by ⁴⁰K(n,α)³⁷Cl or ⁴⁰K(n, p)⁴⁰Ar
- Easier to measure (p,n) and (α,n) and deduce (n,p) and (n,α)
- <u>No experimental data for</u>
 (n,α) destruction channel

R.D. Hoffmann et al. P. Gastis et al.

Experimental Setup

- α-beam from 4.5 MV Tandem
 Pelletron at Edwards Laboratory,
 Ohio University.
- HeBGB is a 4π -polyethelyenemoderated detector
- 16 ³He and 18 BF₃ proportional counters arranged into three concentric rings (4,14, and 16).

WHAT

 $4.25 \text{ MeV} < E_{lab} < 5.80 \text{ MeV}$

Reaction Channels open at Experimental Energies

³⁷Cl + a (E_{lab} = 6000 keV)

Reaction Products Q-Value (keV) Threshold (keV)

⁴¹ K + γ ³⁷ Cl + α	6222.91	6	0	
	0		0	
⁴⁰ Ar + p	-1585.71	5	1745.50	6
⁴⁰ K + NN	-3872.46	8	4262.68	9

Neutrons from HeBGB

- To ensure that α -beam impinges only the target, HeBGB housed solid targets via a target insert mechanism.
- Neutrons produced by the ${}^{37}Cl(\alpha,n){}^{40}K$ reaction are scattered by the polyethylene moderator and detected via the ${}^{10}B(n,\alpha)^{7}Li$ then and 3 He(n,p) 3 H reactions.
- The integrated neutron counts from the pulse height spectra from each pre-amplifer signal provide information about angle-integrated vield.
- The yield from all the pre-amplifier signals is summed to obtain total neutron counts.

HeBGB offers us...

- A near-constant neutron detection efficiency of $(7.5 \pm 1.2)\%$ over the energy range 0.01 MeV 9.00 MeV.
- Removes significant source of systematic uncertainty in (α,n) cross section measurements.

Experimental Limitations

- Background measurements carried out with no target present in the target insert at the same experimental (Interpretention of the same experimental (Interpretention of the same energies.
- The carbon cross-section from d supplemental data was used to calculate cross-sections at energies of interest for background data.

K. Brandenburg et al.

The Statistical Model

Ingredients of a Hauser-Feshbach Calculation

- Optical Potentials
- Energy dependence of level densities
- J dependence of level densities
- Distribution of level densities

...

...

In practice, many adjustable parameters in the models.

• For n,p or n,a cross sections the **optical potentials are key**.

March 17, 2025

Future Plans

- Fine tune statistical model parameters to obtain a better fit.
- Constrain astrophysical reaction rate for the ${}^{40}K(n,\alpha){}^{37}CI$ reaction.
 - Using the **optimized potential values** which explains the experimental data for direct reaction.
 - Using **detailed balance**, we will extract the reaction rate for the destruction of 40 K via 40 K(n, α) 37 Cl.
- Experimentally constraining relevant reaction channels responsible for the destruction of ⁴⁰K → Improved accuracy of astrophysical models for stellar evolution

List of Collaborators

G. Perdikakis, N. Dimitrakopoulos Central Michigan University, Mt. Pleasant, Michigan

C. R. Brune, T. N. Massey, A. V. Voinov Ohio University, Athens, Ohio

Thank You!

