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Background

● This resource is intended to introduce neural networks, generative AI at a high abstract level and 

subsequently focus on explaining Transformers in more depth to a scientific audience.

● Transformers will be presented in the broader context of AI, building the stage from zero, step by step.

● I will act therefore as a synthesizer of many resources created by the broader AI community.

● Hence, many thanks! to all the creators of the helper material. All credits and references are visible on 

the last slide.

● Same references are also given in the footnotes section of each individual slide, which is not visible in 

presentation mode, but will be useful for referencing at home for extra study if need be.

(not visible during presentation)
Footnote URL / reference
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Slide content
(visible in presentation mode)



Artificial Neural Nets and Brain Parallels
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https://towardsdatascience.com/the-differences-between-artificial-and-biological-
neural-networks-a8b46db828b7



Artificial Neural Networks (ANNs)

4
CS231n course from Stanford University

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf



Backpropagation

     Feed-forward / Inference

     Training using 
Backpropagation 
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CS231n course from Stanford University

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf



Backpropagation using Local Gradients and Chain Rule

6
CS231n course from Stanford University

➢ The Chain Rule is implemented with the help of local gradients. 

➢ We recursively multiply the local derivatives. 

➢ Backpropagation is a recursive application of the chain rule backwards through the computation graph.

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf



Cost function
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Literature naming conventions: Cost / Loss / Error function

https://towardsdatascience.com/neural-networks-backpropagation-by-dr-lihi-gur-arie-
27be67d8fdce



Weights update

➢ J and L are usual notations for the Loss / Error / Cost function, i.e. the difference between 
what the model predicts and what it should predict according to the ground truth.

➢ The weights are updated in the direction of the negative gradient, so that the cost 
function is minimized as much as possible.
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https://towardsdatascience.com/neural-networks-backpropagation-by-dr-lihi-gur-arie-
27be67d8fdce



Sequential nature of Recurrent Neural Networks (RNNs)

➢ By unfolding the feedback loop in time, we become aware of the complexity of these networks. It is as if we train a very deep network and that 
is why they are harder to train.

➢ With RNNs things are done sequentially => deep graph structure. 

➢ With Transformers things happen in parallel => broad graph structure.

➢ Transformers might simply be easier to train stably, and maybe that is why they have better results.
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https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85

https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85


Long short-term memory (LSTMs)

➢ Contains special gates that address 
the problem of vanishing gradients.

➢ Addresses the problem of exploding 
gradients.
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https://medium.com/towards-data-science/illustrated-guide-to-lstms-and-gru-s-a-step-
by-step-explanation-44e9eb85bf21



Gated Recurrent Units (GRUs)

➢ Generally considered faster than LSTMs.

➢ In practice => similar outcomes to what 
LSTM provides.
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https://medium.com/towards-data-science/illustrated-guide-to-lstms-and-gru-s-a-step-
by-step-explanation-44e9eb85bf21



Convolutional Neural Networks (CNNs)

➢ Generally applied in computer vision tasks, i.e. 2D image focused, not time sequence data.

➢ We can use 3D CNNs to handle sequences of data, where 3rd dimension is time. Here we talk 
about a cube kernel, instead of a plane 2D kernel.

➢ CNNs are very amenable to parallelism.
12

https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-
network-cnn-deep-learning-99760835f148
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Best of both worlds predictions => Inductive bias + Data

Discriminative models
[older established approach]

Generative models
[newer trend]

➢ Is capable of out of domain generalization
➢ Lots of inductive bias, a priori knowledge is 

injected / enforced as a guide during training
➢ More creative than discriminative models

➢ Use a lot of training data / throw a lot of 
data at the problem task and let the 
network figure it out

➢ Predictions are limited to the training data 
domain, i.e. tied to the train dataset 
statistics, hence poor out of distribution 
predictions

Modeling Spectrum in the current AI Era
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Main Generative AI models

➢ Generative Adversarial Networks / GANs -> Adversarial training / Arms race

➢ Variational Autoencoders / VAEs -> Autoencoder, but with latent space

➢ Flow-based models -> Invertible mapping between distributions

➢ Diffusion models -> Markov chain for denoising intermediate states

➢ Transformers -> we will focus on them in this workshop
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Generative Adversarial Networks / GANs

➢ Two networks: Generator and Discriminator play a min-max game
➢ Generator aims at producing realistic outputs to trick the Discriminator
➢ Discriminator strives to improve its ability to discern true from fake data

https://lilianweng.github.io/posts/2018-10-13-flow-models/ 

https://lilianweng.github.io/posts/2018-10-13-flow-models/
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Variational Autoencoders / VAEs

➢ Inspired from traditional autoencoders that compress data into vector codes
➢ Variational autoencoders will learn a latent distribution function instead
➢ The latent distribution can be sampled, resulting in variable latent samples
➢ The samples are decoded, resulting in a variety of realistic reconstructions

Note -> Re-parametrization trick 

https://ducspe.github.io/masterthesis_danucaus/  -> page 18

https://ducspe.github.io/masterthesis_danucaus/
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Flow-based models

➢ Use invertible neural networks to learn the data distribution
➢ Enable exact log-likelihood directly thanks to one-to-one invertibility
➢ More computationally expensive than VAEs, due to invertibility requirements

https://lilianweng.github.io/posts/2018-10-13-flow-models/ 

https://lilianweng.github.io/posts/2018-10-13-flow-models/
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Diffusion models

➢ Markov chain of states, where each state is a noisy version of the other
➢ The original input X0 is diffused into pure noise Z over several steps
➢ The model learns the noise that needs to be removed from a state at time t, 

to get to an earlier state

P / forward distribution

Q / backward distribution

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Transformers

 “Attention is all you need” paper from 2017 by Vaswani et al. 19

Figure 1 taken from the paper “Attention is all you need” by Vaswani et al. -> 
https://arxiv.org/pdf/1706.03762.pdf



Transformer Block

2. Secondly, a Multilayer Perceptron 
(MLP) crunches the data that was 

communicated amongst tokens in the 
previous self-attention phase.

1. First the tokens communicate 
between themselves / they attend to 

each other (self-attention).

20



Self-Attention

Token 1 Token 2 Token 3 Token N. . . 

➢ All tokens communicate with one another. 

➢ This is computationally expensive because each token has to look at every other token to compute 
an attention score / attention weight.

21



Key, Query and Value Embeddings

Token 

Key -> “What do I contain”.

Query -> 
“What am I looking for”.

Value -> 
“If you find me interesting, 

this is what I will 
communicate to you”.

22



Self-Attention vs Cross-Attention

Cross-Attention -> the 
queries come from the 

decoder, whereas the keys 
and values are from the 

encoder side.

Self-attention -> the key, query 
and value vectors are related to 

the same entity, either the 
encoder, or the decoder. 23



Mathematically Expressing Self-Attention

➢ The dot product Query  ・ Key is the attention score, where Query and Key are embedding 
vectors.

➢ Dot product measures similarity between vectors => Attention can be interpreted as the 
alignment between the Key and the Query vectors (i.e. two tokens find each other 
interesting).

➢ Instead of the dot product, other measures can be used, like the cosine similarity for example 
(Swin Transformer Version 2 paper).

24



Cosine similarity

“Swin Transformer V2: Scaling Up Capacity and Resolution” by Liu et al.

Notice the pre-Layer Norm 
vs 

post-Layer Norm 
switch.

25

Figure 1 from “Swin Transformer V2: Scaling Up Capacity and Resolution” 
paper by Liu et al.  -> https://arxiv.org/abs/2111.09883



Computation Phase / Feed-Forward MLP

➢ After the communication between tokens is finished, an MLP has to “think” on what was 
“said” during the self-attention phase.

➢ This basically means that new features are computed / derived as a result of the 
communication.

26

Let’s fast forward 
back to what we’ve 

 already seen



Positional encoding

➢ The transformer treats the tokens as a 
Bag of Words (BoW).

➢ We need to give each token a label 
that specifies its position in the form of 
a counter ID for instance.

➢ It is interesting that the positional 
encoding information is literally 
added by a “+”/ plus operation.

There are various encoding schemes such as for example absolute encoding, relative encoding, 
that have a significant impact on how the transformer performs in the end. Check out the Swin 
Transformer paper for empirical proof.

27



ChatGPT Pipeline

1) Pretraining the base model.

2) Supervised Fine-Tuning (SFT).

3) Reward Modeling / RM.

4) Reinforcement Learning / RL  (Very much research territory at the moment).

Personal opinion: ChatGPT works so well, because it borrowed many insights from the AlphaZero games 
playing engine from back in 2016. Words are the new chess pieces that have to be smartly arranged.

28

DeepMind subsequently created AlphaStar 
and AlphaFold using similar principles.

https://arstechnica.com/science/2018/12/move-over-alphago-alphazero-taught-itself-
to-play-three-different-games/



Pretraining the Foundational Model

➢ Use raw data to train a Base Model.

➢ The dataset is huge => potentially low quality in some places, but very large quantity.

➢ We obtain a document completer in the end.

➢ Thousands of GPUs work in parallel (ex: 1000-2000 A100 GPUs).

29



Supervised Fine Tuning (SFT stage)

➢ Low quantity, but very high quality data: ~ 100K (prompt, response) tuples.

➢ Domain Specialists / Contractors have to scrutinize the dataset so that close to ideal (prompt, 
response) tuples are assembled.

➢ Less GPUs are required than in step 1 (ex: 1-100).

➢ The outcome is the so-called SFT model.

30



Reward Modeling

➢ Ask the SFT model to produce multiple answers per prompt.

➢ Ask contractors to carefully rank these answers.

➢ Train a reward model on these rankings.

➢ Order of 1 to 100 GPUs for training.

➢ The outcome is the so-called Reward Model / RM => Evaluates token trajectories.

31

Token 11 Token 12 Token 13 Token 14 Token 15 Reward 2

Token 21 Token 22 Token 23 Token 24 Token 25 Token 26 Token 27 Token 28 Reward 3

Token 01 Token 02 Reward 1 Token trajectory 1

Token trajectory 2

Token trajectory 3



Reinforcement Learning

➢ Train a PPO algorithm (Proximal Policy Optimization).

➢ Use the previously trained reward model to evaluate the reward.

➢ PPO will have the task of generating token “trajectories” that will have a very good overall 
score.

➢ Order of 1 to 100 GPUs for training.

➢ The outcome is the so called RL model / RLHF (reinforcement learning with human feedback). 

32

https://odsc.com/blog/reinforcement-learning-with-ppo/



Vision Transformer / ViT

“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale” by A. Dosovitskiy et al. (2021)
33

Figure 1 from the paper “An image is worth 16x16 words: Transformers for image 
recognition at scale” by A. Dosovitskiy et al. -> https://arxiv.org/pdf/2010.11929v2.pdf



Swin Transformer

 “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows” by Liu et al. (2021)

34

Figure 3 from the paper “Swin Transformer: Hierarchical Vision Transformer using 
Shifted Windows” by Liu et al. -> https://arxiv.org/pdf/2103.14030.pdf



Audio Transformer

Raw sound waves can be mapped to a different space using STFT (Short-time Fourier Transform).

Here time series become images => problem is adapted to be tackled by the ViT / Swin Transformer.
35

https://en.wikipedia.org/wiki/Short-time_Fourier_transform#/media/File:Spectrogram-
19thC.png



Time Series Transformer (TST)

Continuous data is sampled and quantized into discrete tokens.

Implementations available at: https://huggingface.co/docs/transformers/model_doc/time_series_transformer

36
“Transformers in Time Series: A Survey” paper, by Wen et al. [2023]

Figure 1 from the “Transformers in Time Series: A Survey” paper, 
by Wen et al. -> https://arxiv.org/pdf/2202.07125.pdf ; 
https://github.com/qingsongedu/time-series-transformers-review

https://arxiv.org/pdf/2202.07125.pdf


Code example: Self-Attention Snippet Version 1

37

# Version 1:

# We want x[b,t] = mean_{i<=t} x[b,i]

xbow = torch.zeros((B,T,C))

for b in range(B):

   for t in range(T):

       xprev = x[b,:t+1] # (t,C)

       xbow[b,t] = torch.mean(xprev, 0)

print(x[0])

print(xbow[0])

torch.Size([4, 8, 2])
tensor([[ 1.9269,  1.4873],
    [ 0.9007, -2.1055],
    [ 0.6784, -1.2345],
    [-0.0431, -1.6047],
    [-0.7521,  1.6487],
    [-0.3925, -1.4036],
    [-0.7279, -0.5594],
    [-0.7688,  0.7624]])
tensor([[ 1.9269,  1.4873],
    [ 1.4138, -0.3091],
    [ 1.1687, -0.6176],
    [ 0.8657, -0.8644],
    [ 0.5422, -0.3617],
    [ 0.3864, -0.5354],
    [ 0.2272, -0.5388],
    [ 0.1027, -0.3762]])
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Code example: Self-Attention Snippet Version 2

# Version 1

# We want x[b,t] = mean_{i<=t} x[b,i]

xbow = torch.zeros((B,T,C))

for b in range(B):

   for t in range(T):

       xprev = x[b,:t+1] # (t,C)

       xbow[b,t] = torch.mean(xprev, 0)

print(x[0])

print(xbow[0])

# Version 2

wei = torch.tril(torch.ones(T, T))

wei = wei / wei.sum(1, keepdim=True)

xbow2 = wei @ x # (B, T, T) @ (B, T, C) ---> 

(B, T, C)

print("Are xbow and xbow2 the same? -> ", 

torch.allclose(xbow, xbow2))

torch.Size([4, 8, 2])
tensor([[ 1.9269,  1.4873],
    [ 0.9007, -2.1055],
    [ 0.6784, -1.2345],
    [-0.0431, -1.6047],
    [-0.7521,  1.6487],
    [-0.3925, -1.4036],
    [-0.7279, -0.5594],
    [-0.7688,  0.7624]])
tensor([[ 1.9269,  1.4873],
    [ 1.4138, -0.3091],
    [ 1.1687, -0.6176],
    [ 0.8657, -0.8644],
    [ 0.5422, -0.3617],
    [ 0.3864, -0.5354],
    [ 0.2272, -0.5388],
    [ 0.1027, -0.3762]])
Are xbow and xbow2 the same? ->  True
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Code example: Self-Attention Snippet Version 3

# Version 2

wei = torch.tril(torch.ones(T, T))

wei = wei / wei.sum(1, keepdim=True)

xbow2 = wei @ x # (B, T, T) @ (B, T, C) ---> 

(B, T, C)

print("Are xbow and xbow2 the same? -> ", 

# Version 3: using Softmax

tril = torch.tril(torch.ones(T,T))

wei = torch.zeros((T,T))

wei = wei.masked_fill(tril == 0, float('-

inf'))

wei = F.softmax(wei, dim=-1)

xbow3 = wei @ x

print("Are xbow/xbow2 equal to xbow3? -> ", 

torch.allclose(xbow, xbow3))

torch.Size([4, 8, 2])
tensor([[ 1.9269,  1.4873],
    [ 0.9007, -2.1055],
    [ 0.6784, -1.2345],
    [-0.0431, -1.6047],
    [-0.7521,  1.6487],
    [-0.3925, -1.4036],
    [-0.7279, -0.5594],
    [-0.7688,  0.7624]])
tensor([[ 1.9269,  1.4873],
    [ 1.4138, -0.3091],
    [ 1.1687, -0.6176],
    [ 0.8657, -0.8644],
    [ 0.5422, -0.3617],
    [ 0.3864, -0.5354],
    [ 0.2272, -0.5388],
    [ 0.1027, -0.3762]])
Are xbow/xbow2 equal to xbow3? ->  True



Takeaways

➢ Generative AI is the art of encoding complex real world distributions, such that we can generate 
creative results later via sampling from the encoded distribution.

➢ Transformers are powerful neural networks that borrow the best ideas from prior models in the AI 
ecosystem and combine them together for a synergistic effect.

➢ Self-attention and Feed-Forward MLP are the major conceptual components of a Transformer block.

➢ Self-attention is essentially a communication graph where tokens exchange information stored in 
channels amongst themselves.

➢ The Feed-Forward MLP is used for the computation phase to learn embeddings. Better embeddings 
means better abstract “meanings” are learned in a high dimensional space, resulting in better predictions.

➢ Residual connections and pre- / post-normalization are other important attributes to help towards 
successful training and faster convergence.
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