UH
ij‘l
L2 ¥ Universitit Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Detecting Usage of Deprecated Web APIs via Tracing

SE 2025 Leif Bonorden & André van Hoorn

=1 The method isSpace(char) from the type Character is deprecated

boolean result = Character.isSpace('@');

APL.
o for this tYPE ot

pout Deprecat®

We know 2

GET https://www.character.org/isSpace?character= %40

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

Detecting Usage of
Deprecated Web AP
via Tracing

Bonorden & van Hoorn,
ICSA 2024

UH

idi
a8 Universitdt Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

2024 1EEE 2lst International Conference on Software Architecture (ICSA)

< @

Detecting Usage of Deprecated
Web APIs via Tracing

Leif Bonorden
Unwversitit Hamburg
Hamburg, Germany

leif bonorden @uni-hamburg. de.
ORCID: 0000-0002-2131-7750

Abstraci—Deprecation is a way to inform dlients using an
application programming interface (APT) that the usage of this
AP is discouraged. Toal support and research for deprecation
in local APLs are well established. However, nowadays web APIs
are more commanly used, ¢.g., using the REST architectural
style, However, the teehnigues (o deteet and handle the usage of
deprecated Tocal APIs cannot be directly applied to web APIS.
Previous approaches for detecting deprecated web APE Focus on
static analysis of
bl dn itvstigation of asodited APT spucifcutions.
These appraaches currently have two essential hmitations: (i) Th
tacget of an API call can often nat be determined tatis
(i) Deprecation in APT specifications is not the only way to signal
deprecation for web APls.

W introduce a dynamic approach using tracing to detect
calls to web APL. Subsequently, we check the called APTs for
deprecation using an API specification, response meta-data, or a
knowledge base. This approach addresses both limitations of the
detoction with static analysis. Wo implement the approach and
evaluate it on three projects, including client-server calls as well
as a micraservice benchmark systom. The empirical evaluation
yields a precision of 1.00 and u recall of 0.95. The false negatives
can b attributed to a shortcoming in the automatic instrumen-
tation pmvldad by OpenTelemetcy abservability frameswork.

Ind torface,

dynamlc analysis, tracing

1. INTRODUCTION

Software systems are typically not isoated units but inieract
with their surroundings [11. Such communication with exicmal
systems and their interfaces may be a business requircment,
thus posing an architecrurally Sigmificant requirement, or a
voluntary decision during the sysiom’s design, thus introducing
tho dependency as an architecaural consraint jor further dovel-
opment 2], [3]. In addition 1o systems external not belonging
© the same organization, a similar sewing is encountered

with a microservice architecture [4] or bounded contexts [5].

As software systems evolve, they also need to adapt their
interfaces to changed functionality. A common way to inform
clients calling these interfaces that their use is no longer
encouraged is the deprecation of an entire API, an element in
the API, or a particular version of the APL Depending on the
further actions after a deprecation is mtroduced, it may lead Lo
techmical debt with both API clients [6] and API providers [7].

2835704 3424/531 00 €224 TEEE
DO 10,1 109/1CSAS9870.2024.0001 1

André van Hoorn

Universitdt Hamburg

Hamburg, Germany
andre.van hoom@uni-hamburg de.
ORCID: (000-0003-2567-6077

1f clients wish Lo react 1o the deprecation of an AF1 they de-
pend om, they first need 1o be aware of the deprecation. While
comprehensive suppor exists for detecting the deprecation of
siatic APIs (e.g., for Java libraries) the siuation is different
for web APIs (e.g., for REST calls) [8]

Frevious appraaches for the detection of calls to deprecated
weh APIs have utilized static amalysis methods similar ta
the case of static APIs [9]. However, this has two essential
limitations: (i) The target of an API call can often nat be
determined statically. (i) Deprecation in API specifications is
not the only way Lo signal deprecation for web APIs. Thus, we
mtroduce an approach o determine the usage of deprecated
web APIs dynamically. To the best of our knowledge, it is the
first such approach.

To overcome Lhese limitations, we develop a new approach
comprising two essential sieps: (i) The execution of a client
component is observed, and information ahout calls to web
APIs is recorded. (ii) The recorded data is analyzed and each
endpaint is checked for deprecation. Our approach considers
deprecation that is signaled directly in the call's response, in
an associated AP specification, or in a knowledge. base. We
implement the approach far HTTE APIs and OpenAPI speci-
fications. OpenAPI is a de-facto standard for the specification
of REST APIs

This paper's main contributions are:

« We present the first approach to identify the usage of

deprecated web APIs dynamically.

« We implement the approach for REST APIs, Open-

Telemeury data, and various forms of deprecation infor-
mation.

+ We evaluate the approach on multiple sample sysiems
+ We iclude a replication package with <ode, examples,
and the evaluation data [10]
These contributions benefit practitioners who use or offer
d APIs the. ibuti benefit re-
searchers who wish 10 study the deprecation of web APIs
Section 11 imroduces fundamentals, mativates our research,
and surveys related work. In Section IV, we introduce our
approach and present its implementation. Subsequently, we
evaluate the approach and its implementation in Section ¥
and discuss our results and their limitations in Section VI
Finally, Section VII concludes the paper.

Application Programming Interface (API)

API — interface to another software component or system

using means of programming languages

Local APIs —interfaces to elements within the same ecosystem,

usually within a programming language; statically resolved at build time

e.g., Java libraries (via Maven, JAR files, ...)

Remote APIs — interfaces using means of network communication

e.g., message-oriented middleware (Kafka, ...) or Web APIs (REST, WebSocket, ...)

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

Deprecation of APIs

ﬂ deprecated
the use of this element is discouraged

Breaking changes: changes in an API that potentially break existing client code
—violation of backward compatibility

Example: removal of a method

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

Deprecation: Java APIs (local, static)

=1, The method is5pace(char] from the type Character is deprecated

boolean result = Character.isSpaee('@');

S

isSpace('@") false

\ 4

@Deprecated
public static boolean isSpace(char ch) {..};

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

Deprecation: REST APIs (remote, dynamic)

HttpClient client = HttpClient.newBuilder().build();

HttpRequest request = HttpRequest.newBuilder().
uri("https://character.com/isSpace”).build();

HttpResponse response = client.send(request, myBodyHandler);

POST /isSpace HTTP 1.1 HTTP/1.1 200 OK
Host: character.com Date: Thu, 27 Feb 2025
{ .. "character":"@", ..} { .. "result":false, .. }
AN p—
474 OPENAPI =]
INITIATIVE =

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

The APl element

Deprecation: REST APIs (remote, dynamic) & isSpace s deprecated.

HttpClient client = HttpClient.newBuilder().build();

HttpRequest request = HttpRequest.newBuilder().
uri("https://character.com/isSpace”).build();

HttpResponse response = client.send(request, myBodyHandler);

POST /isSpace HTTP 1.1 HTTP/1.1 200 OK
Host: character.com Deprecation: Wed, 31 Dec 2025
{ .. "character":"@", ..} { .. "result":false, ..}
A/OPENAPI deprecated: true
INITIATIVE

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

Related Work

Deprecation info is not always provided [Yasmin et al. 2020] [Di Lauro et al. 2022],
and developers assume unlimited availability [Lercher et al. 2023].

Static approach in Javascript detects calls and checks deprecation [Yasmin 2021].

Static approaches to identify calls in Java
search for hard-coded URL strings [Rapoport 2017] [Cadient 2020]
or assume prior knowledge [Pigazzini et al. 2020] [Genfer & Zdun 2021].

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

Challenges for Remote APIs

Calls to remote APIs are harder to detect and may use third-party libraries
—e. g. more than 15 popular HTTP clients in Java.

Call targets may not be present in the source code

—in particular, they may be determined only at runtime.

Remote APIs may be deprecated later

—even if no deprecation has been declared when the client is developed.

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

10

Design Principles for our Dynamic Solution

DP1

DP2

DP3

DP4

SE 2025

The identification should not be targeted to a single programming language.

The identification should include calls with targets
that are only known at runtime.

The identification should include deprecation information from API

specifications, HTTP header data in responses, and knowledge bases.

No prior information about an API should be required for the identification.

Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing n

Tracing (OpenTelemetry)

= Instrumentation:
Instructing the application/runtime environment to record specified events.

= Span:
Individual record of an observed event.

= Trace:
Set of related spans, covering one call — possibly through multiple components.

= Metric:
Measurement of runtime properties based on the observation.

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

12

Our Approach with OpenTelemetry

Client « — — — — — i API

Response ; D

API Specification

Observation
Telemetry Data
Deprecation
Detector
Collector D D

Spans/Traces Knowledge Base

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

Example Observations

"key":"http.url",
"value":{
"stringValue":"https://character.com/isSpace?character=%40

}

Request

"key":"http.response.header.deprecation”,
"value":{"arrayValue":{"values":
[{"stringValue":"Wed, 31 Dec 2025 23:59:59 GMT"}]

)
}

Response

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

14

Evaluation on Sample Projects

® @

It works! © = relies on instrumentation provided by
OpenTelemetry

It works welll © = only applicable dynamically

« Precision 1.0 (with typical disadvantages)

= Recall 0.95 = only evaluated on simple sample projects

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing 15

Outlook

this
approach

general
problem

SE 2025

= evaluation in industrial settings
= usage without telemetry framework

= privacy / anonymization of URLs

= combination with static approaches

= improvements for APl providers

Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

16

Summary

Deprecation is well-researched and well-supported for local/static APIs.

Static approaches on detection of deprecation fail for remote APIs.

We present a dynamic approach for web APIs:
= We monitor outgoing API calls.

= We check traces for deprecation and cross-check with other sources.

It works (on artificial projects).

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

17

Overview

Clent | _ _ _ _ _ — API

Response ; D

API Specification

Observation
Telemetry Data
Deprecation
Detector
Collector D D

Spans/Traces Knowledge Base

SE 2025 Bonorden & van Hoorn: Detecting Usage of Deprecated Web APIs via Tracing

	Motivation
	Folie 1: Detecting Usage of Deprecated Web APIs via Tracing
	Folie 2
	Folie 3: Detecting Usage of Deprecated Web APIs via Tracing Bonorden & van Hoorn, ICSA 2024

	Background
	Folie 4: Application Programming Interface (API)
	Folie 5: Deprecation of APIs
	Folie 6: Deprecation: Java APIs (local, static)
	Folie 7: Deprecation: REST APIs (remote, dynamic)
	Folie 8: Deprecation: REST APIs (remote, dynamic)
	Folie 9: Related Work
	Folie 10: Challenges for Remote APIs

	Approach
	Folie 11: Design Principles for our Dynamic Solution
	Folie 12: Tracing (OpenTelemetry)
	Folie 13: Our Approach with OpenTelemetry
	Folie 14: Example Observations

	Evaluation
	Folie 15: Evaluation on Sample Projects

	Conclusion
	Folie 16: Outlook
	Folie 17: Summary
	Folie 18: Overview

