
On the Anatomy of Real-World R Code for Static Analysis

Analyzing R

At SE ’25 Ulm University | MSR ’24 | Florian Sihler, Pietzschmann, Straub, Tichy, Diera, Dahou ∣ February, 2025

The R Programming Language Is Used
in Research1

Is Used
for Statistical Computing2

Is Used (mostly)
by Non-Programmers

• ≈70 % of scripts are not reproducible1

• Lacks sophisticated static-analysis tools

• Many powerful reflective capabilities3

• Incomplete language specification4

Which features are
actually used?

[1] Trisovic et al., “A Large-Scale Study on Research Code Quality and Execution” (Sci Data ’22)
[2] https://cran.r-project.org/
[3] Flückiger et al., “R melts brains: an IR for first-class environments and lazy effectful arguments” (DLS ’19)
[4] R Core Team, R Language Definition

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis 2

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- R programming language is mainly used in research
- for statistical computing with the generation of visualizations, model analysis, and data cleaning,
- and mostly used by people without a computer science.
- In general, the language ecosystem provides a vast amount of features and existing libraries to support users, **but**
- lacks sophisticated static analysis tools like linters which makes it more difficult to comprehend existing programs.
- However, building such tools is challenging, because R has many powerful features, most of which derive from its nature as an interpreted language.
- Furthermore, the language specification is incomplete, which makes it difficult to get an overview of features required to support, features which are actually used in practice and even usage semantics of the language.
- To tackle this problem we performed a large-scale analysis of over 50 million lines of R code to better understand how R is used in practice.
- **Next Slide**

https://cran.r-project.org/

Related Research

[5] Optimization
Fortran

162

D. Qiu et al. / The Journal of Systems and Software 123 (2017) 160–172

Many
 projects contain

 duplicate
 source

 files. Such
 duplications

probably
 distort the

 statistics of the
 syntactic rule

 usage. To
 tackle

this problem, we
 take

 the
 following

 measures. For each
 Git repos-

itory, we
 only

 analyze
 the

 main
 branch

 to
 avoid

 the
 redundant

computation
 on

 a
 project with

 multiple
 copies. Also

 the
 dupli-

cated
 files may

 still exist within
 a

 project. A
 search

 program
 we

wrote
 helps us to

 automatically
 identify

 such
 functionally

 equiva-

lent source
 files. Our tool only

 detects type-1
 file

 clone
 (which

 may

differ in
 whitespace, comments and

 layout).

Tool support. We
 developed

 a
 tool, named

 the
 J ava

 S yntactic

R
 ule

 Extractor (JSRExtractor), that collects all the
 syntactic rules

from
 our source

 code
 corpus. JSRExtractor uses Eclipse

 EGit to
 in-

teract with
 Git project repositories and

 automatically
 check

 out

source
 code

 versions. It leverages the
 Eclipse

 JDT
 parser, which

parses Java
 code

 and
 builds its abstract syntax

 tree
 (AST). The

tool integrates Neo4j , a
 popular graph

 database, to
 store

 and
 man-

age
 the

 extracted
 ASTs. It can

 quickly
 traverse

 ASTs and
 obtain

the
 usage

 of syntactic rules, including
 their dependency

 usage.

For instance, JSRExtractor supports performing
 a

 depth-2
 bounded

search
 on

 ASTs to
 calculate

 syntactic rule
 dependencies. To

 analyze

the
 distribution

 of syntactic rule
 usage

 over time, we
 used

 JSREx-

tractor to
 check

 out multiple
 versions of each

 project’s source
 code

to
 study

 the
 year-by-year evolution

 of syntax
 rule

 usage. Based
 on

this highly
 optimized

 and
 well tested

 tool, processing
 the

 whole

corpus took
 approximately

 2
 days of computing

 on
 a

 dual-Xeon

server with
 16GB

 of main
 memory.

2.2. Research
 questions and

 key
 findings This study

 aims to
 answer how

 language
 syntax

 is adopted
 in

real open-source
 projects. To

 this end, we
 designed

 three
 specific

research
 questions (RQ) for investigation. This section

 also
 lists

summary
 results to

 provide
 an

 overview.

RQ1: How
 are syntactic rules used

 in
 practice?

For each
 project, we

 determine
 how

 many
 syntactic rules it

used. In
 addition, we

 compute
 the

 popularity
 of each

 rule, i.e. , how

much
 of the

 projects use
 it. We

 are
 also

 interested
 in

 the
 concrete

usage
 of different syntax

 rules within
 the

 code
 corpus. This data

tells us which
 syntactic rules are

 most used
 and

 which
 are

 least

used, highlighting
 some

 unpopular rules as possible
 candidates for

language
 designers to

 continuously
 improve

 their designs, and
 fi-

nally
 achieve

 the
 goal of simplifying

 the
 language

 to
 ease

 its main-

tenance, especially
 to

 reduce
 its cognitive

 load
 on

 developers.

Findings: (i) The
 usage

 of syntax
 rules obeys Zipf’s law

 (Powers,

1998
): some

 rules are
 used

 frequently, while
 others rarely; (ii)

most projects use
 only

 a
 subset of syntax

 rules; and
 (iii) project

size, measured
 in

 size
 of Java

 files, correlates with
 the

 adoption
 of

syntactic rules. Section
 3

 explains these
 findings in

 detail.

RQ2: How
 are syntactic rules used

 in
 practice over time?

This RQ
 sheds light on

 the
 evolution

 of the
 syntactic rule

 usage.

For each
 project, we

 investigate
 the

 frequency
 of syntactic rules

changed
 during

 the
 project’s development life-cycle. For each

 rule,

we
 report its historical adoption

 rate
 by

 projects. The
 data

 shows

syntactic rules becoming
 popular or unpopular . We

 are
 also

 inter-

ested
 in

 understanding
 how

 the
 usage

 of evolved
 syntactic rules

after language
 updates, e.g. , how

 the
 new, or updated

 rules impact

the
 usage

 of pre-existing
 rules?

Findings: (i) The
 use

 of most existing
 syntactic rules remains

stable
 over time, with

 some
 exceptions whose

 usage
 is declining;

(ii) most newly
 introduced

 rules were
 adopted

 by
 developers grad-

ually
 but some

 have
 been

 widely
 used

 in
 projects. However, not all

of them
 were

 used
 as expected; and

 (iii) newly
 added

 rules do
 im-

pact the
 use

 of the
 existing

 relevant rules. Section
 4

 details our

findings.
RQ3: How

 strongly
 do

 rule usage in
 practice depend

 on
 context?

In
 contrast to

 RQ1, which
 studies the

 syntactic rules in
 isolation,

this RQ
 helps us understand

 syntactic rule
 usage

 dependencies in

real-world
 code, and

 answer questions like
 “What rules tend

 to
 fol-

low
 a

 certain
 type

 of “parent” rule?” In
 particular, we

 calculate
 the

conditional probability
 of dependent rule

 usage
 to

 investigate
 what

rules are
 likely

 to
 be

 adopted
 together.

Findings: (i) Syntactic rules exhibit nontrivial dependency
 (e.g. ,

6%
 of rule

 combinations show
 strong

 dependency
 with

 >
 50%

probability); and
 (ii) rule

 usage
 is contextual and

 helps identify

potential syntactic sugar to
 simplify

 a
 language

 or guide
 syntactic

(rather than
 lexical) refactoring

 or code
 completion

 and
 suggestion.

Section
 5

 explains our findings in
 detail.

3. Single
 rule

 usage
 in

 practice
 Notation. First, we

 formalize
 the

 measures that we
 use. Each

project P i = { f 1 , f 2 , · · · } is a
 set of files. Our source

 code
 corpus is

a
 set of projects: C

 =
 { P 1 , P 2 , P 3 , · · · } . When

 r i is a
 syntactic rule,

R
 =

 { r 1 , r 2 , · · · , r n } is the
 set of syntactic rules under analysis. We

use
 O

 (P
 i) to denote

 the
 multiset of rules used

 in
 project P

 i . We
 let

m
 X denote

 multiplicity
 function

 of the
 multiset X

 ; the
 multiplicity

m
 O
 (P) (r) returns the

 multiplicity, i.e. the
 count of uses, of the

 rule

r ∈
 P

 . We
 elide

 X
 , when

 its binding
 is clear from

 context. R
 (P

) de-

notes the
 set that underlies O

 (P
) whose

 indicator function
 returns

1
 for every

 rule
 in

 O
 (P

) with
 multiplicity

 >
 0. Likewise, we

 use

multiset O
 (f) to

 record
 the

 usage
 of rules in

 the
 file

 and
 R

 (f) to

denote
 O

 (f)’s underlying
 set, for f ∈

 P
 .

3.1. Aggregate results
From

 the
 perspective

 of syntactic rule, we
 study

 how
 rules are

used
 in

 our corpus, tallying
 their popularity

 and
 frequency

 . To
 this

end, we
 defined

 three
 measures:

1. PP(r) represents the
 P

 ercentage
 of the

 P
 rojects that adopt the

syntactic rule
 r :

P P (r) =

| C

′ |
| C| , where

 C

′ =
 { P i | r ∈

 R
 (P i) } PP(r) measures a

 rule’s popularity
 across the

 projects in
 a

 cor-

pus. The
 value

 is larger when
 more

 projects adopt r ; when
 all

projects in
 a

 corpus adopt r, PP(r) =
 1

 .

2. PF(r) represents the
 P

 ercentage
 of the

 F iles that adopt the
 syn-

tactic rule
 r :

P F (r) =

∑

P i ∈ C

∣∣P ′
i

∣∣
∑

P i ∈ C
| P i | (P ′ i ⊆ P i , ∀ f i ∈ P ′ i , r ∈ R

 (f i)) PF(r) measures the
 popularity

 of rule
 use

 across files, which
 is

a
 finer-grained

 perspective
 to

 measure
 the

 rule
 adoption. The

value
 is larger when

 more
 files adopt r ; when

 all files adopt r,

PF(r) =
 1

 . 3. PO(r) is the
 P

 ercentage
 of O

 ccurrences of the
 rule

 r computed

as the
 count of uses of r over the

 count of all rule
 uses:

P O
 (r) =

∑

P∈ C
m

 O (P) (r) ∑

r∈ R

∑

P∈ C
m

 O (P) (r)
PO(r) evaluates the

 rule
 use

 frequency
 among

 the
 corpus. The

value
 would

 be
 larger if the

 occurrences of rule
 r is higher in

the
 source

 code. From
 the

 perspective
 of the

 software
 projects, we

 further won-

der how
 projects use

 the
 syntactic rules. Namely, how

 much
 of the

syntactic rules are
 enough

 to
 construct a

 project in
 common?

 In

addition, from
 a

 finer-grained
 angle, we

 wish
 to

 learn
 how

 much

of the
 syntactic rules are

 used
 to

 construct a
 file

 in
 common. To

this end, we
 define

 two
 values to

 measure:

D. Qiu et al. / The Journal of Systems and Software 123 (2017) 160–172

161

of newly-introduced features over three main language releases,

they only examined a relatively small subset of language features

and did not consider pre-existing features. Studying how a large number of real-world programs use lan-

guage syntax may help validate or disprove the many popular ”the-

ories” about what language features are most popular, most use-

ful, easiest to use, etc. that abound in popular literature about pro-

gramming and on the Internet. In addition, the gap between lan-

guage features and their actual usage may guide pedagogy, giving

teachers insight into how to teach a programming language in a

better way. Language designers may leverage data on actual syn-

tactic rule usage to optimize the design of languages, e.g. simpli-

fying unpopular features or identifying boilerplate that could be

eliminated. We will provide concrete examples when presenting

our detailed study results. To this end, we perform a large-scale empirical study on a di-

verse corpus of over 5,0 0 0 real-world Java projects to gain insight

into how syntactic rules are used in practice. We generate abstract

syntax trees (ASTs) for approximately 150 million SLoC, and tabu-

late and analyze the occurrences of all syntactic rules. In particu-

lar, to understand how syntax rules are used over time, we have

checked out over 13,0 0 0 versions from the studied projects’ revi-

sion histories to understand rule usage evolution.
We also perform depth-2 bounded nesting analysis to investi-

gate dependent rule usage. Indeed, when using a grammar to parse

a string, some nonterminals in the grammar can be reached only

after another nonterminal has been traversed. For X, Y ∈ N , the

set of nonterminals, and α, β ∈ (N ∪ T) ∗ where T is the set of

terminals, we write X
∗→
 αY β to denote that Ydepends on X . We

bound this dependency because, in the limit, all nonterminals vac-

uously depend on the grammar’s start symbol. In this work, we
consider k = 2 and report our dependency results for X

2 →
 αY β,

as these short range dependencies are closer to the sentences that

programmers write and think about and thus are better candidates

for identifying idioms.
In summary, this paper makes the following contributions:

• It presents the first effort in 30 years to conduct a large-scale,

comprehensive, empirical analysis of the use of language con-

structs in a modern programming language, namely Java;

• This work is the first to study dependent rule usage and quan-

tify its contextual nature. This is also the first to study the evo-

lution of rule usage over time, the adoption of new rules, and

how new rules impact the usage of pre-existing ones.
• The results show that: (i) 20% of the most-used rules account

for 85% of all rule usage, while 65% of the least-used rules are

used < 5% of the time and 40% only < 1% of the time; (ii)

16.7% of the rules are unpopular and are adopted in < 25% of

the projects (e.g. assert statement, labeled statement, and

empty statement); and (iii) for dependent rule usage, 6% of the

combinations exhibit strong dependency with > 50% probabil-

ity.

Taken together, our results permit language designers to em-

pirically consider whether new constructs are likely to be worth

the cost of their implementation and deployment. They also iden-

tify boilerplate (i.e. repetitive rule usage) that new constructs may

profitably replace. For example, we have observed a reduced use

of anonymous class declarations, while an increased use of the

enhanced-for constructs w.r.t. all syntactic rule usage. We believe

that work like ours enables data-driven language design, analogous

to how Cocke’s study at IBM in the 1970s on the actual usage of

CISC instructions eventually led to the RISC architectures.

Table 1
Overview and evolution of the JLSs.

Version Release date #Added rules #Updated rules JLS1 1996 115
–

JLS2 20 0 0 4
–

JLS3 2005 12
16

JLS4 2013 1
2

Table 2
Summary statistics on the Java code corpus. Corpus summary

Repository

Github
of projects

5,646
of files

1,392,528
Lines of code

144,081,228
Project scale range (# of files) 1 ∼39,247
Project history range (# of years) 1 ∼17
Project commits range (# of commits) 1 ∼123, 938

2. Study design and results

This section describes our methodology in detail, with special

attention given to the study subject and the research questions,

followed by our general findings.

2.1. Study subject

Java syntax. To understand how programmers adopt syntax,

we selected Java, a modern, mature and widely-used programming

language as our research subject. Java’s syntax is the set of rules

defining how a Java program is written and interpreted; it is es-

sentially a dialect of C/C++. Major releases of the Java Language

Specification (JLS) track its constant evolution. In this paper, we survey 132 syntactic rules in total, distributed

in JL S1 ∼ JL S4 1 Gosling et al. (1996) ; 20 0 0); 20 05); 2013). Table 1

lists the distribution, including the release date and correspond-

ing updates. In contrast to the study by Dyer et al. (2014) , which

focuses on the newly imported language syntax rules, we concen-

trate on the complete set of the syntactic rules. The details of the

rules can be found online 2 . Code corpus. Our corpus is a large (around 150 million SLoC)

collection of open-source real-world Java programs containing

5,646 projects retrieved from Github, one of the most popular

repositories. The projects were selected based on their popularity

(i.e. size of watchers, stars and forks). The corpus contains not only

widely-used Java projects maintained by reputable open-source or-

ganizations (e.g. Tomcat, Hadoop, Derby from the Apache Software

Foundation and JDT, PDT, EGIT from the Eclipse Foundation), but

also small projects developed by novice programmers. All these

projects are managed by Git, one of the most popular version con-

trol systems in the open-source community. Table 2 provides sum-

mary statistics on the corpus. The corpus is also diverse, covering projects of different size

and development history. It contains small, medium and large

projects, where the number of Java files within projects ranges

from 1 to 39,247. The corpus also includes projects with short,

medium and long lifecycles, where their development years span

from 1 to 17 and the commits with each repository range from 1

to 123,938. The corpus thus provides a wide and comprehensive

range of projects on which to study the evolution of syntactic rule

usage.

1 For simplicity, JL S1, JL S2, JL S3 and JLS4 are used to represent the 1st edition,

2nd edition, 3rd edition and Java SE 7 edition of the JLS, respectively.

2 It is available at: http://dong-qiu.github.io/papers/lang _ syntax/appendix.pdf .

The Journal of Systems and Software 123 (2017) 160–172

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Understanding the syntactic rule usage in java

Dong Qiu

a , Bixin Li a , ∗, Earl T. Barr b , Zhendong Su

c

a School of Computer Science and Engineering, Southeast University, China
b Department of Computer Science, University College London, UK
c Department of Computer Science, University of California Davis, USA

a r t i c l e i n f o

Article history:

Received 1 February 2016

Revised 26 September 2016

Accepted 19 October 2016

Available online 20 October 2016

Keywords:

Language syntax

Empirical study

Practical language usage

a b s t r a c t

Context: Syntax is fundamental to any programming language: syntax defines valid programs. In the

1970s, computer scientists rigorously and empirically studied programming languages to guide and in-

form language design. Since then, language design has been artistic, driven by the aesthetic concerns and

intuitions of language architects. Despite recent studies on small sets of selected language features, we

lack a comprehensive, quantitative, empirical analysis of how modern, real-world source code exercises

the syntax of its programming language.

Objective: This study aims to understand how programming language syntax is employed in actual devel-

opment and explore their potential applications based on the results of syntax usage analysis.

Method: We present our results on the first such study on Java, a modern, mature, and widely-used

programming language. Our corpus contains over 50 0 0 open-source Java projects, totalling 150 million

source lines of code (SLoC). We study both independent (i.e. applications of a single syntax rule) and de-

pendent (i.e. applications of multiple syntax rules) rule usage, and quantify their impact over time and

project size.

Results: Our study provides detailed quantitative information and yields insight, particularly (i) confirming

the conventional wisdom that the usage of syntax rules is Zipfian; (ii) showing that the adoption of new

rules and their impact on the usage of pre-existing rules vary significantly over time; and (iii) showing

that rule usage is highly contextual.

Conclusions: Our findings suggest potential applications across language design, code suggestion and com-

pletion, automatic syntactic sugaring, and language restriction.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Syntax and semantics define a programming language. Infor-

mally, a language has many features. A language’s syntactic rules

provide the most direct means to measure the use of a language’s

features. Thousands of programming languages exist; each embod-

ies a different set of possible language features. Language design-

ers usually have limited knowledge on how programmers actu-

ally use a language (Knuth, 1971). This leads to many unnatural

and rarely used features being introduced, while expected ones

not introduced (Strangest language feature, 2016; Your language

sucks, 2016). In addition, many language features, especially lan-

guage syntax, remain a significant barrier to novice programmers

(Denny et al., 2011; Stefik and Siebert, 2013).

∗ Corresponding author. Fax: 86 25 52090879.

E-mail addresses: dongqiu@seu.edu.cn (D. Qiu), bx.li@seu.edu.cn (B. Li),

e.barr@ucl.ac.uk (E.T. Barr), su@cs.ucdavis.edu (Z. Su).

We tackle the question of how to systematically understand

these features and their usage. Rather than ad-hoc characteriza-

tions of features, we propose the use of language grammars to

precisely and systematically characterize language features. Indeed,

most programming language features quite directly map onto syn-

tactic constructs. Therefore, we study how programmers use lan-

guage features by analyzing their use of the language syntax.

Knuth conducted the first study to understand how program-

mers use fortran over 40 years ago (Knuth, 1971). Similar stud-

ies were subsequently performed on COBOL (Salvadori et al., 1975;

Chevance and Heidet, 1978), APL (Saal and Weiss, 1977) and

Pascal (Cook and Lee, 1982) between the 1970s and 1980s. In

recent decades, there has been little quantitative study demon-

strating how a modern programming language is used in practice,

especially from the perspective of language syntax. Previous stud-

ies have investigated the use of subsets of language features (e.g. ,

Java generics (Parnin et al., 2011) and Java reflection (Livshits et al.,

2005)). Although Dyer et al. (Dyer et al., 2014) investigated the use

http://dx.doi.org/10.1016/j.jss.2016.10.017

0164-1212/© 2016 Elsevier Inc. All rights reserved.

[6] Syntactic Rules
Java

Evaluating the Design of R
3

2 An R Primer
We introduce the main concepts of the R programming language. To understand the

design of R, it is helpful to consider the end-user experience that the designers of R and

S were looking for. Most sessions are interactive, the user loads data into the virtual

machine and starts by plotting the data and making various simple summaries. If those

do not suffice, there are some 4 338 statistical packages that can be applied to the data.

Programming proper only begins if the modeling steps become overly repetitive, in

which case they can be packaged into simple top-level functions. It is only if the existing

packages do not precisely match the user’s needs that a new package will be developed.

The design of the language was thus driven by the desire to be intuitive, so users who

only require simple plotting and summarization can get ahead quickly. For package

developers, the goal was flexibility and extendibility. A tribute to the success of their

approach is the speed at which new users can pick up R; in many statistics departments

the language is introduced in a week.
The basic data type in R is the vector, an ordered collection of values of the same kind.

These values can be either numerics, characters, or logicals. Other data types include

lists (i.e., heterogeneous vectors) and functions. Matrices, data frames, and objects are

built up from vectors. A command for creating a vector and binding it to x is:

x <- c(1, 2.1, 3, NA)Missing values, NA, are crucial for statistical modeling and impact the implementation,

as they must be represented and handled efficiently. Arithmetic operations on vectors are

performed element by element, and shorter vectors are automatically extended to match

longer ones by an implicit extension process. For instance,

v <- 1 + 3*xbinds the result of the expression 1+3*x to v. There are three different vectors: x and two

vectors of length one, namely the numeric constants 1 and 3. To evaluate the expression,

R will logically extend the constant vectors to match the length of x. The result will be a

new vector equivalent to c(4,7.3,10,NA). Indexing operators include:

v1 <- x[1:3];
v2 <- x[-1];

x[is.na(x)] <- 0

here v1 is bound to a new vector composed of the first three elements of x, v2 is bound

to a new vector with everything but the first value of x, and finally, x is updated with 0

replacing any missing values.In R, computation happens by evaluating functions. Even the assignment, x<-1,

is a call to the built-in assign("x",1). This design goes as far as making the (in

a parenthesized expression a function call. Functions are first class values that can be

created, stored and invoked. So,pow <- function(b,e=2) if(e==1) b else b*pow(b,e-1)

creates a function which takes two arguments and binds it to pow. Function calls can

specify parameters either by position or by name. Parameters that have default values,

such as e above, need not be passed. Thus, there are three equivalent ways to call pow:

pow(3);
pow(3,2);

pow(e=2,3)

2 Morandat et al.

dynamic features of the language include forms of reflection over its environment, the

ability to obtain source code for any unevaluated expression, and the parse and eval

functions to dynamically treat text as code. Finally, the language supports objects. In

fact, it has two distinct object systems: one based on single-dispatch generic functions,

and the other on classes and multi-methods. Some surprising interactions between the

functional and object parts of the language are that there is no aliasing, object structures

are purely tree-shaped, and side effects are limited.The R language can be viewed as a fascinating experiment in programming language

design. Presented with a cornucopia of programming models, which one will users

choose, and how? Clearly, any answer must be placed in the context of its problem

domain: data analysis. How do these paradigms fit that problem domain? How do they

strengthen each other and how do they interfere? Studying how these features are used

in practice can yield insights for language designers and implementers. As luck would

have it, the R community has several centralized code repositories where R packages are

deposited together with test harnesses. Thus, not only do we have all the open source

contributions made in the last 15 years, but we also have them in an executable format.

This paper makes the following contributions:– Semantics of Core R: Some of the challenges dealing with R come from the fact

it is defined by a single implementation that exposes its inner workings through

reflection. We make the first step towards addressing this issue. Combining a careful

reading of the interpreter sources, the R manual [16], and extensive testing, we give

the first formal account of the semantics of the core of the language. We believe that

a precise definition of lazy evaluation in R was hitherto undocumented.
– TraceR Framework: We implemented TraceR, an open source framework for analysis

of R programs. TraceR relies on instrumented interpreters and off-line analyzers

along with static analysis tools.– Corpus Gathering: We curated a large corpus of R programs composed of over

1 000 executable R packages from the Bioconductor and CRAN repositories, as well

as hand picked end-user codes and small performance benchmark programs that we

wrote ourselves.– Implementation Evaluation: We evaluate the status of the R implementation. While

its speed is not acceptable for use in production systems, many end users report being

vastly more productive in R than in other languages. R is decidedly single-threaded,

its semantics has no provisions for concurrency, and its implementation is hopelessly

non-thread safe. Memory usage is also an issue; even small programs have been

shown to use immoderate amounts of heap for data and meta-data. Improving

speed and memory usage will require radical changes to the implementation, and a

tightening of the language definition.– Language Evaluation: We examine the usage and adoption of different language

features. R permits many programming styles, access to implementation details, and

little enforcement of data encapsulation. Given the large corpus at hand, we look at

the usage impacts of these design decisions.The code and data of our project are available in open source from:
http://r.cs.purdue.edu/

Evaluating the Design of the R Language
Objects and Functions For Data Analysis

Floréal Morandat Brandon Hill Leo Osvald Jan Vitek

Purdue University

Abstract. R is a dynamic language for statistical computing that combines lazy
functional features and object-oriented programming. This rather unlikely lin-
guistic cocktail would probably never have been prepared by computer scientists,
yet the language has become surprisingly popular. With millions of lines of R
code available in repositories, we have an opportunity to evaluate the fundamental
choices underlying the R language design. Using a combination of static and
dynamic program analysis we assess the success of different language features.

1 Introduction

Over the last decade, the R project has become a key tool for implementing sophisticated
data analysis algorithms in fields ranging from computational biology [7] to political
science [11]. At the heart of the R project is a dynamic, lazy, functional, object-oriented
programming language with a rather unusual combination of features. This computer
language, commonly referred to as the R language [15,16] (or simply R), was designed
in 1993 by Ross Ihaka and Robert Gentleman [10] as a successor to S [1]. The main
differences with its predecessor, which had been designed at Bell labs by John Chambers,
were the open source nature of the R project, vastly better performance, and, at the
language level, lexical scoping borrowed from Scheme and garbage collection [1].
Released in 1995 under a GNU license, it rapidly became the lingua franca for statistical
data analysis. Today, there are over 4 000 packages available from repositories such as
CRAN and Bioconductor.1 The R-forge web site lists 1 242 projects. With its 55 user
groups, Smith [18] estimates that there are about 2 000 package developers, and over 2
million end users. Recent interest in the financial sector has spurred major companies
to support R; for instance, Oracle is now bundling it as part of its Big Data Appliance
product.2

As programming languages go, R comes equipped with a rather unlikely mix of
features. In a nutshell, R is a dynamic language in the spirit of Scheme or JavaScript, but
where the basic data type is the vector. It is functional in that functions are first-class
values and arguments are passed by deep copy. Moreover, R uses lazy evaluation by
default for all arguments, thus it has a pure functional core. Yet R does not optimize
recursion, and instead encourages vectorized operations. Functions are lexically scoped
and their local variables can be updated, allowing for an imperative programming style.
R targets statistical computing, thus missing value support permeates all operations. The

1 http://cran.r-project.org and http://www.bioconductor.org.
2 http://www.oracle.com/us/corporate/press/512001.

[7] Dynamic Usage
R

[7] Morandat et al., “Evaluating the design of the R language: Objects and functions for data analysis” (ECOOP ’12)
[6] Qiu et al., “Understanding the Syntactic Rule Usage in Java” (JSS ’17)
[5] Knuth, “An Empirical Study of FORTRAN Programs” (Software: Practice and Experience ’71)

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis 3

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- However, we are not the first to attempt such a thing.
- Donald Knuth, for example, conducted the first large-scale analysis of 440 Fortran programs in 1971 with the goal to optimize Fortrans real-world performance.
- Qiu et al. analyzed the syntactic rules of Java programs to improve the understanding of the language, and,
- closer to our work, Morandat et al. evaluated the dynamic usage of R vignettes to better understand how the language is used in practice.
- In contrast to Morandat, we focus on the static usage of language features, allowing us to provide insights into the usage of R features in practice.

Extraction Workflow

Scripts
single-use

4 k files

Packages
re-use

359 k files

Parse Dataflow Extract Summary

96.5 %

99.6 %

RQ 1: Frequent Features
RQ 2: Differences in Research Scripts and Packages
RQ 3: Insights for Static Analysis

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis 4

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- We started by collecting around 4000 research scripts available on platforms like zenodo, figshare, journal of statistical software, as well as all around 20-thousand CRAN-packages available at the time.
- [TODO: workflow process]
- Now, we want to focus on a subset of our results, with a lot more to be found in the paper.

Overview

4.1
Processing Errors

4.2
Metadata

4.3
Assignments and Access

4.4
Conditionals

4.5
Loops

4.6
Function Definitions

4.7
Function Calls

4.8
Packages

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Overview 5

Assignments [4.3]

• ←, ↞, =, ↠, →, assign, delayedAssign, . . .

• 41 % of scripts mix ← and =

• Assignment functions are rare, but more common in packages

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Findings 6

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Assignments are, just like in about any imperative language, a fundamental part of R programs. R offers a wide variaty of assignment operators, some of which with intersting semantics, such as non standard evaluation.
- However, we find that by far most scripts use the "standard" assignment operators <- and =, although style guides prefer the first one to prevent confusion with named arguments in function calls.
- Interestingly, about 41% of scripts mix both operators, although they have the same (default) semantics. This may indicate that scripts are written by different users without a clear style-guide or linter in place, or even copy-pasted from different sources.
- Thankfully rare are R's assignment functions which allow to assign variables by strings, allow for non-standard evaluation and more, all of which is hard to analyze statically.

Loops [4.5]

for (i in 1:10) {
print(i)

}
for (in) {

}
R-Scripts R-Packages

. . .

9.84 %
single symbol

18.02 %
call

70.23 %
binary operator

. . .

7.32 %
single symbol

9.36 %
call

82.15 %
binary operator

• Most loops have a for-i form

• Scripts contain on average 3 times as many loops

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Findings 7

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Loops are, although fundamental, usually discouraged in R as they can be replaced by the languages' implicit vectorization feature which allows to map functions on vectors without the need for explicit loop structures.
- Nevertheless, the average script file contains more than three, the average package file around one loop per file. With for-loops being by-far the most prominent.
- Taking a closer look at the structure of these for-loops we find that by far the most of them have the form of a for-i loop which iterates over a fixed range - which is beneficial for static analyzers as it allows to infer the loop's behavior without the need for complex dataflow analysis.

Meta-Programming [4.7.1]

Evaluate Strings
eval(parse(text=

paste0("v",1," ← 42")
)) # v1 ← 42

Modify Functions
f ← function(a, b) a
body(f) ← quote(b)
f(1, 2) # 2

Redefine “Keywords”
‘for‘ ← \(...) "hi"
for(i in 1:10) x ← i
"hi"

Store/Load Environment
save.image(file="env")
...
load("env")

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Findings 8.1

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Last but not least we want to take a look at meta-programming features which are a core part of R's reflective capabilities.
- They allow to evaluate strings as code, modify functions at runtime, redefine keywords and even store and load the current environment. [TODO: explain]
- However, the string evaluation is only used in about 1% of scripts and 3% of packages, mostly for the dynamic generation of simple code (like assignments)
- Both, the modification of functions and the redefinition of keywords is effectively unused in the analyzed codebase.
- Only the loading part of environments happens in about 12% of scripts, which allows them to load previously prepared models.

Meta-Programming [4.7.1]

Evaluate Strings
eval(parse(text=

paste0("v",1," ← 42")
)) # v1 ← 42

Modify Functions
f ← function(a, b) a
body(f) ← quote(b)
f(1, 2) # 2

Redefine “Keywords”
‘for‘ ← \(...) "hi"
for(i in 1:10) x ← i
"hi"

Store/Load Environment
save.image(file="env")
...
load("env")

1 % of scripts

3 % of packages
Effectively unused

Effectively unused
12 % of scripts

0.8 % of packages

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Findings 8.2

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Last but not least we want to take a look at meta-programming features which are a core part of R's reflective capabilities.
- They allow to evaluate strings as code, modify functions at runtime, redefine keywords and even store and load the current environment. [TODO: explain]
- However, the string evaluation is only used in about 1% of scripts and 3% of packages, mostly for the dynamic generation of simple code (like assignments)
- Both, the modification of functions and the redefinition of keywords is effectively unused in the analyzed codebase.
- Only the loading part of environments happens in about 12% of scripts, which allows them to load previously prepared models.

Study Results

RQ1
Frequent Features

+ Only 2 of all assignment operators
– Reflective functions
– No tests/checks in scripts

RQ2
Differences

• Scripts are longer
• Scripts prefer (for-)loops

RQ3
Insights

• Extensions for {lintr}
• No focus on reflective functions required
• Error-tolerant parsing

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Conclusion 9

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- To summarize, we found that only 2 of the assignment operators are used in practice, while reflective functions remain largely unused.
- Scripts tend to be longer and prefer the classic for-loop (even over implicit vectorization), while we found only packages to contain explicit (unit-)tests.
- As insights we gain not just a better understanding of the language but also find some missing linter rules, like the mixing of assignment operators, and the need for error-tolerant parsing, as - and i skipped on that for time reasons - around 2% of our scripts even failed to parsed.

R has many features

only a few are used frequently

https://doi.org/10.1145/3643991.3644911

Appendix

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Appendix 11

References I

[1] Ana Trisovic et al. “A Large-Scale Study on Research Code Quality and Execution”. 2022
[2] The Comprehensive R Archive Network — cran.r-project.org. 2024
[3] Olivier Flückiger et al. “R melts brains: an IR for first-class environments and lazy effectful

arguments”. 2019
[4] R Core Team. R Language Definition. 2024
[5] Donald E. Knuth. “An Empirical Study of FORTRAN Programs”. 1971
[6] Dong Qiu et al. “Understanding the Syntactic Rule Usage in Java”. Jan. 1, 2017
[7] Floréal Morandat et al. “Evaluating the design of the R language: Objects and functions for data

analysis”. 2012

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Appendix 12

https://www.nature.com/articles/s41597-022-01143-6
https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf
https://www.sciencedirect.com/science/article/pii/S0164121216302126

	Overview
	Findings
	Conclusion
	Appendix

