On the Anatomy of Real-World R Code for Static Analysis

Software Engineering universitat |
S Programming Languages u U m

. Is Used Is Used Is Used (mostly)
The R Programm|ng Language {in Researchq {for Statistical Computingz} {by Non-Programmers

° 270 % of scripts are not reproducible’

* Lacks sophisticated static-analysis tools .
P y Which features are

?
* Many powerful reflective capabilities’ actually used?

* Incomplete language specification”

[1] Trisovic et al,, “A Large-Scale Study on Research Code Quality and Execution” (Sci Data '22)

[2] https://cran.r-project.org/

[3] Fliickiger et al., “R melts brains: an IR for first-class environments and lazy effectful arguments” (DLS "19)
[4] R Core Team, R Language Definition

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- R programming language is mainly used in research
- for statistical computing with the generation of visualizations, model analysis, and data cleaning,
- and mostly used by people without a computer science.
- In general, the language ecosystem provides a vast amount of features and existing libraries to support users, **but**
- lacks sophisticated static analysis tools like linters which makes it more difficult to comprehend existing programs.
- However, building such tools is challenging, because R has many powerful features, most of which derive from its nature as an interpreted language.
- Furthermore, the language specification is incomplete, which makes it difficult to get an overview of features required to support, features which are actually used in practice and even usage semantics of the language.
- To tackle this problem we performed a large-scale analysis of over 50 million lines of R code to better understand how R is used in practice.
- **Next Slide**

https://cran.r-project.org/

Related Research

[7]
T

nderstanding the syt e sge oo @

[6] Syntactic Rules [7] Dynamic Usage
R

[5] Optimization
Java

Fortran

[7] Morandat et al., “Evaluating the design of the R language: Objects and functions for data analysis” (ECOOP "12)

[6] Qiu et al., “Understanding the Syntactic Rule Usage in Java” (JSS '17)
[5] Knuth, “An Empirical Study of FORTRAN Programs” (Software: Practice and Experience '71)

orld R Code for Static Analy:

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- However, we are not the first to attempt such a thing.
- Donald Knuth, for example, conducted the first large-scale analysis of 440 Fortran programs in 1971 with the goal to optimize Fortrans real-world performance.
- Qiu et al. analyzed the syntactic rules of Java programs to improve the understanding of the language, and,
- closer to our work, Morandat et al. evaluated the dynamic usage of R vignettes to better understand how the language is used in practice.
- In contrast to Morandat, we focus on the static usage of language features, allowing us to provide insights into the usage of R features in practice.

Extraction Workflow

Summary

4K files
Scripts) 96.5%
single-use
.»[Parse }—0[Dataflow }—0[Extract]o@
Packages
re-use [y 99.6%
359 kK files

RO 1: Frequent Features

RO 2: Differences in Research Scripts and Packages
RO 3: Insights for Static Analysis

F. Sihler (Ulm University)

On the Anatomy of Real-World R Code for Static Analysis

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- We started by collecting around 4000 research scripts available on platforms like zenodo, figshare, journal of statistical software, as well as all around 20-thousand CRAN-packages available at the time.
- [TODO: workflow process]
- Now, we want to focus on a subset of our results, with a lot more to be found in the paper.

Overview

44
Processing Errors

4.2 4.6
Metadata Function Definitions
43

4.7
Assignments and Access Function Calls

L4y . 4.8
Conditionals Packages

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Overview

Assignments [4.3]

° 1% of scripts mix « and =

° Assignment functions are rare, but more common in packages

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Assignments are, just like in about any imperative language, a fundamental part of R programs. R offers a wide variaty of assignment operators, some of which with intersting semantics, such as non standard evaluation.
- However, we find that by far most scripts use the "standard" assignment operators <- and =, although style guides prefer the first one to prevent confusion with named arguments in function calls.
- Interestingly, about 41% of scripts mix both operators, although they have the same (default) semantics. This may indicate that scripts are written by different users without a clear style-guide or linter in place, or even copy-pasted from different sources.
- Thankfully rare are R's assignment functions which allow to assign variables by strings, allow for non-standard evaluation and more, all of which is hard to analyze statically.

Loops [4.5]

for (i in 1:10) {
print(i)

* Most loops have a for-i form

° Scripts contain on average 3

F. Sihler (Ulm University)

8215 %

binary operator

9.36 %
call

732%

single symbol

for (in)

R-Scripts

times as many loops

On the Anatomy of Real-World R Code for Static Analysis — Findings

70.23 %

binary operator

18.02 %
call

9.84%

single symbol

R-Packages

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Loops are, although fundamental, usually discouraged in R as they can be replaced by the languages' implicit vectorization feature which allows to map functions on vectors without the need for explicit loop structures.
- Nevertheless, the average script file contains more than three, the average package file around one loop per file. With for-loops being by-far the most prominent.
- Taking a closer look at the structure of these for-loops we find that by far the most of them have the form of a for-i loop which iterates over a fixed range - which is beneficial for static analyzers as it allows to infer the loop's behavior without the need for complex dataflow analysis.

Meta-Programming [4.74]

Evaluate Strings
eval(parse(text=

paste@("v",1," « 42")
)) # vl « 42

Modify Functions

f « function(a, b) a
body(f) « quote(b)
£(1, 2) # 2

Redefine “Keywords”
‘for‘ < \() "hi"
for(i in 1:10) x « i
n h i n

Store/Load Environment

save.image(file="env"
...
load("env"

F. Sihler (Ulm University)

On the Anatomy of Real-World R Code for Static Analysis — Findings

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Last but not least we want to take a look at meta-programming features which are a core part of R's reflective capabilities.
- They allow to evaluate strings as code, modify functions at runtime, redefine keywords and even store and load the current environment. [TODO: explain]
- However, the string evaluation is only used in about 1% of scripts and 3% of packages, mostly for the dynamic generation of simple code (like assignments)
- Both, the modification of functions and the redefinition of keywords is effectively unused in the analyzed codebase.
- Only the loading part of environments happens in about 12% of scripts, which allows them to load previously prepared models.

Meta-Programming [4.74]

Evaluate Strings

1% of scripts

3% of packages

Modify Functions

Effectively unused

Redefine “Keywords”

Effectively unused

Store/Load Environment

12% of scripts

0.8 % of packages

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Findings

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- Last but not least we want to take a look at meta-programming features which are a core part of R's reflective capabilities.
- They allow to evaluate strings as code, modify functions at runtime, redefine keywords and even store and load the current environment. [TODO: explain]
- However, the string evaluation is only used in about 1% of scripts and 3% of packages, mostly for the dynamic generation of simple code (like assignments)
- Both, the modification of functions and the redefinition of keywords is effectively unused in the analyzed codebase.
- Only the loading part of environments happens in about 12% of scripts, which allows them to load previously prepared models.

Study Results

+ Only 2 of all assignment operators

RQ1

- Reflective functions
Frequent Features

- No tests/checks in scripts

RQ2 * Scripts are longer
Differences * Scripts prefer (for-)loops

° Extensions for {1lintr}
* No focus on reflective functions required

RQ3
Insights

° Error-tolerant parsing

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Conclusion

protect �egingroup def MessageBreak {
 }let protect immediatewrite @unused {
LaTeX Warning: No author given.
}endgroup

- To summarize, we found that only 2 of the assignment operators are used in practice, while reflective functions remain largely unused.
- Scripts tend to be longer and prefer the classic for-loop (even over implicit vectorization), while we found only packages to contain explicit (unit-)tests.
- As insights we gain not just a better understanding of the language but also find some missing linter rules, like the mixing of assignment operators, and the need for error-tolerant parsing, as - and i skipped on that for time reasons - around 2% of our scripts even failed to parsed.

R has many features

only a few are used frequently

https://doi.org/10.1145/3643991.3644911

Appendix

On the Anatomy of Real-World R Code for Static Analysi

References |

[1]
[2]
[3]

[4]
[5]
[6]
[71

Ana Trisovic et al. “A Large-Scale Study on Research Code Quality and Execution”. 2022
The Comprehensive R Archive Network — cran.r-project.org. 2024

Olivier Fliickiger et al. “R melts brains: an IR for first-class environments and lazy effectful
arguments”. 2019

R Core Team. R Language Definition. 202/,
Donald E. Knuth. “An Empirical Study of FORTRAN Programs”. 1971
Dong Qiu et al. “Understanding the Syntactic Rule Usage in Java”. Jan. 1, 2017

Floréal Morandat et al. “Evaluating the design of the R language: Objects and functions for data
analysis”. 2012

F. Sihler (Ulm University) On the Anatomy of Real-World R Code for Static Analysis — Appendix

https://www.nature.com/articles/s41597-022-01143-6
https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf
https://www.sciencedirect.com/science/article/pii/S0164121216302126

	Overview
	Findings
	Conclusion
	Appendix

